期刊文献+

认知无线网络中频谱预测的能量有效性设计 被引量:2

Energy-efficient design of spectrum prediction in cognitive radio networks
下载PDF
导出
摘要 基于频谱预测对认知用户进行能量有效性设计,重新设计认知用户的帧结构,在频谱感知前加入频谱预测时隙,在预测为空闲的信道中选择信道进行频谱感知,避免浪费频谱感知能量,与传统认知用户相比,提高了能量有效性。推导表明,认知用户能量效率由频谱预测能量、频谱预测时长、认知无线网络通信强度、信道数量决定。仿真结果表明,为了提高认知用户的能量效率,频谱预测参数必须满足预测能量低于32mW、预测时长小于15ms的条件。认知无线网络的通信强度的提高和信道数量的增加能够提高认知用户的能量效率。 An energy efficient secondary user was designed based on the spectrum prediction. The frame structure of the secondary user was redesigned, and the prediction slot was added before the sensing slot to select channel for sensing only from the channels predicted to be idle. Consequently, the sensing energy is saved and the energy efficiency is improved compared to the traditional secondary user. It is further found that the energy efficiency is determined by prediction energy, prediction duration, traffic intensity and the number of channels in cognitive radio networks(CRN). Simulation results show that to improve energy ef- ficiency, prediction energy should be controlled less than 32 mW and prediction duration should be cut shorter than 15ms. Furthermore, increasing traffic intensity and channel amount of the cognitive radio net- works improves the energy efficiency of secondary user.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2015年第2期103-108,共6页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61102092 61301161 61471392 61471395)
关键词 认知无线网络 频谱预测 能量有效性设计 CRN spectrum prediction energy-efficient design
  • 相关文献

参考文献13

  • 1HAYKIN S. Cognitive radio:Brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005,23(2):201-219.
  • 2LIANG Y C, ZENG Y H, EDWARD C, et al. Sensing-throughput tradeoff for cognitive radio networks [J]. IEEE Trans Wireless Communications, 2008, 7(4):1326-1337.
  • 3HEO J, JU H, PARK S, et al. Simultaneous sensing and transmission in cognitive radio [J]. IEEE Trans Wireless Communications, 2014,13(4):1948-1959.
  • 4PEI Y, LIANG Y C, THE K C, et al. Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation, and sensing order [J]. IEEE Journal on Selected Areas in Communications, 2011,29(8):1648-1659.
  • 5YARKAN S, ARSLAN H. Binary time series approach to spectrum prediction for cognitive radios [C]//IEEE Vehicular Technology Conference. Baltimore:IEEE, 2007:1563-1567.
  • 6YU C J, HE Y Y, QUAN T F. Frequency spectrum prediction method based on EMD and SVR [C]//Proceedings of IEEE Conference Intelligent Systems Design and Applications.Taipei:IEEE, 2008:39-44.
  • 7TUMULURU V K, WANG P, NIYATO D. A neural network based spectrum prediction scheme for cognitive radio [C]//2010 IEEE International Conference on Communications.Cape Town:IEEE, 2010:1-5.
  • 8TUMULURU V K, WANG P, NIYATO D. Channel status prediction for cognitive radio networks [J]. Wireless Communications and Mobile Computing, 2010,12(10):862-874.
  • 9CHEN Zhe,GUO Nan,HU Zhen,et al. Experimental validation of channel state prediction considering delays in practical cognitive radio [J]. IEEE Transactions on Vehicular Technology, 2011,60(4):1314-1325.
  • 10CHEN Zhe, GUO Nan, HU Zhen,et al. Channel state prediction in cognitive radio,Part I:Response delays in practical hardware platforms [C]//Proceedings of IEEE Southeastcon.Nashville:IEEE, 2011:45-49.

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部