期刊文献+

基于多种空间滤波方案的海温资料同化实验 被引量:1

Experiments of sea temperation data assimilation based on various space filtering scheme
下载PDF
导出
摘要 为解决海洋资料同化中空间滤波方案选择的主观性问题,基于最优插值算法,借助现场资料分析系统(ISAS),分别试验高斯函数(Gauss)、二阶自回归函数(SOAR)以及贝塞尔函数(Bessel)作为拟合函数的空间滤波方案,同化全球实时海洋观测计划(Argo)温度剖面资料,并从多个角度比较分析场的质量,以期为寻找最优空间滤波方案提供借鉴。实验表明,Bessel函数方案同化结果的均方根误差最小,SOAR函数方案的均方根误差最大,但是在个别层次上,Bessel函数方案的误差大于其他2种方案;在多个典型层次上,Bessel函数方案的分析场能够分辨更多中小尺度的信息,这与Bessel函数本身可以揭示不同波谱能量误差分布的特性有关。结合海面动力地形数据和Argo剖面的分布状况分析,几个显著的中尺度冷暖中心分布是符合物理海洋学常识的。需要指出的是,在网格分辨率未提高的前提下,这些中小尺度的信号需要借助其他辅助资料和分析方法进行甄别。 Abstract;To select spatial filtering scheme in the ocean data assimilation,with the aid of in-situ analysis system(ISAS) and the optimal interpolation algorithm, this paper performed three different schemes of space filtering. Gauss function, second-order autoregressive(SOAR) function and Bessel function by as- sirnilating the array for real--time geostrophic ocean graphy(Argo) profile temperature data. In order to find the best scheme for space filtering, they evaluated the quality of analyzed temperature from different aspects. Experiment results show that the scheme based on Bessel function owns a minimum root mean square error and the one based on SOAR function has the maximum root mean square error, although there are a few levels in which Bessel Scheme results in more errors than the other two schemes. In several typical levels, the Bessel Scheme can distinguish more information ranging from large scale to meso and sub-meso scales, which maybe benefits from its advantage of revealing the characteristics of error distribu- tion of the different spectral energy with different scales. Further work should be done to assess whether the meso and sub-meso scale information is useful signal or noisy signal by using more objective analysis method.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2015年第2期173-179,共7页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(41276088 41206002)
关键词 空间滤波 海温 误差分布 中尺度涡 space filtering sea temperation error distribution mesoscale eddies
  • 相关文献

参考文献20

  • 1REYNOLDS R W, SMITH T M.Improved global sea surface temperature analyses using optimum interpolation[J]. Journal of Climate, 1994,7(6),929-948.
  • 2TALAGRAND O,COURTIER P. Variational assimilation of meteorological observations with the adjoint vorticity equation. I:theory[J]. Quarterly Journal of the Royal Meteorological Society, 2007,113,1311-1328.
  • 3COURTIER P, THPAUT J N, HOLLINGSWORTH A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994,120,1367-1387.
  • 4EVENSEN G. The ensemble kalman filter:theoretical formulation and practical implementation[J]. Ocean dynamics, 2003,53(4):343-367.
  • 5EUGENIA K. Atmospheric modeling, data assimilation and predictability[M]. Cambridge:Cambridge University Press, 2003.
  • 6龚建东,魏丽,陶士伟,赵刚,万丰.全球资料同化中误差协方差三维结构的准确估计与应用Ⅰ:观测空间协方差的准确估计[J].气象学报,2006,64(6):669-683. 被引量:18
  • 7GASPARI G, COHN S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.
  • 8ZHOU G, FU W, ZHU J, et al. The impact of location-dependent correlation scales in ocean data assimilation[J]. Geophysical Research Letters, 2004,31(21):1-4.
  • 9ZHANG Chunling,XU Jianping,BAO Xianwen,WANG Zhenfeng.An effective method for improving the accuracy of Argo objective analysis[J].Acta Oceanologica Sinica,2013,32(7):66-77. 被引量:14
  • 10ISHII M, KIMOTO M, KACHI M. Historical ocean subsurface temperature analysis with error estimates[J]. Monthly Weather Review, 2003,131(1):51-73.

二级参考文献36

  • 1庄照荣,薛纪善,庄世宇,朱国富.资料同化中背景场位势高度误差统计分析的研究[J].大气科学,2006,30(3):533-544. 被引量:19
  • 2管秉贤.伊豆海脊两侧顺时针流涡的若干观测证据[J].黄渤海海洋,1996,14(4):1-9. 被引量:2
  • 3高理,刘玉光,荣增瑞.黑潮延伸区的海平面异常和中尺度涡的统计分析[J].海洋湖沼通报,2007(1):14-23. 被引量:15
  • 4王建捷 陈起英 姚明明等.我国中期数值预报又迈上一个新台阶——T213L31数值预报系统投入业务运行[J].北京:国家气象中心年报,2002,:7-8.
  • 5Daley R.Atmospheric Data Analysis.Cambridge University Press,1991.457 pp
  • 6Stephen E C.An introduction to estimation theory.J Met Soc Japan,1997,75B:257-288
  • 7Gandin L S.Objective Analysis of Meteorological Fields (in Russian).Israel Program for Scientific Translation,1965.242pp
  • 8Rutherford I D.Data assimilation by statistical interpolation of forecast error fields.J Atmos Sci,1972,29:809-815
  • 9Hollingsworth A,Lonnberg P.The statistical structure of short-range forecast errors as determined from radiosonde data,Part I:the wind field.Tellus,1986,38A:111-136
  • 10Lonnberg P,Hollingsworth A.The statistical structure of short-range forecast errors as determined from radiosonde data,Part II:the covariance of height and wind error.Tellus,1986,38A:137-161

共引文献34

同被引文献34

  • 1Hurlburt H E. Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model[J]. Journal of Geophysical Research Atmospheres, 1986,91(C2) : 2372-2400.
  • 2Haines K, Malanotte-Rizzoli P, Young R E, et al. A comparison of two methods for the assimilation of altimeter data into a shallow- water model[J]. Dynamics of Atmospheres & Oceans, 1993,17 ( 2- 3):89-133.
  • 3Cooper M, Haines K. Altimetric assimilation with water property conservation[J]. Journal of Geophysical Research, 1996,101 ( 101 ) : 1059-1078.
  • 4Chen D,Zebiak S E,Cane M A,et al. Initialization and Pre-dictability of a Coupled ENSO Forecast Model[J]. Monthly Weather Review, 1997,125 (5) : 773-788.
  • 5Syu H H,Neelin J D. ENSO in a hybrid coupled model. Part II: prediction with piggyback data assimilation[J]. Climate Dynamics, 1999,16( 1 ) : 35-48.
  • 6Tang Y, Kleeman R. A new strategy for assimilating SST data for ENSO predictions [J]. Geophysical Research Letters, 2002,29 (17) :22-1-22-4.
  • 7Stommel H. Note on the use of the TS correlation for dynamic height anomaly computations[J]. Journal of Marine Research, 1947,6(2) : 85-92.
  • 8Troccoli A, Haines K. Use of the temperature-salinity relation in a data assimilation context[J]. Journal of Atmospheric and Oceanic Technology, 1999,16(12) : 2011-2025.
  • 9Yan C,Zhu J,Li R,et al. Roles of vertical correlations of back- ground error and T-S relations in estimation of temperature and salinity profiles from sea surface dynamic height[J]. Journal of Geophysical Research: Oceans (1978-2012), 2004, 109 (C8) : 64-69.
  • 10Ricci S,Weaver A T,Vialard J,et al. Incorporating State-Depen- dent Temperature-Salinity Constraints in the Background Error Covariance of Variational Ocean Data Assimilation [J]. Monthly Weather Review, 2005,133 ( 1 ) : 317.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部