期刊文献+

基于时间序列模型的超声信号滤波算法研究 被引量:5

The Study on Ultrasonic Signal Filtering Algorithm Based on the Time Series Model
下载PDF
导出
摘要 针对超声波测量油井液面深度系统中,现有降噪滤波算法复杂,效果差的缺点,提出了基于时间序列模型和新息卡尔曼滤波相结合的新方法。利用时间序列分析法对动液面测量系统建立ARMA模型;基于卡尔曼滤波实时在线消除随机噪声的特性,设计了新息自适应卡尔曼滤波算法,并结合ARIMA模型以消除模型误差,实现了基于时间序列系统模型对系统特征状态的最优估计目的。该新型滤波方法已经在油田现场测试和运用,测试结果表明,算法实时、高效,滤波效果好,精度高,能满足实际工程应用。 Aiming at the shortcomings of the complexity and the poor results of the existing filtering algorithm in the oil well Ultrasonic level measurement system,a new method based on time series models and the Innovation-Based Adaptive Kalman Filter is proposed. The ARMA model of the dynamic oil well Ultrasonic level measurement system is established based on the time series model. The Innovation-Based Adaptive Kalman Filter is studied and designed also. Using the online eliminate random noise error characteristics of the Kalman Filter and the characteristics of the ARIMA model can Makes the optimization of the system features state. The method has been used in the producing oil field. The actual test,this method has high accuracy,real time and efficient. And the measurement error is small, which can meet the practical engineering applications.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第3期396-400,共5页 Chinese Journal of Sensors and Actuators
基金 河南省教育厅科学技术研究重点项目(12B510037 13B510296) 河南省科技厅科技攻关计划项目(142102210579) 郑州市科技局普通科技攻关计划项目(141PPTGG363)
关键词 超声波 时间序列 新息自适应卡尔曼滤波 ARMA ARIMA ultrasonic wave time series ARMA ARIMA innovation-based adaptive Kalman filter
  • 相关文献

参考文献10

二级参考文献65

共引文献143

同被引文献43

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部