期刊文献+

Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition 被引量:2

Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition
下载PDF
导出
摘要 A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink. A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期835-841,共7页 中南大学学报(英文版)
基金 Project(21271188) supported by the National Natural Science Foundation of China
关键词 热丝化学气相沉积 金刚石粉末 微通道 散热器 制备 场发射扫描电子显微镜 FE-SEM chemical vapor deposition microchannel nanoseeding Ti interlayer Cu substrate
  • 相关文献

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部