摘要
A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.
A dual transponder carrier ranging method can be used to measure inter-satellite distance with high precision by combining the reference and the to-and-fro measurements. Based on the differential techniques, the oscillator phase noise, which is the main error source for microwave ranging systems, can be significantly attenuated. Further, since the range measurements are derived on the same satellite, the dual transponder ranging system does not need a time tagging system to synchronize the two satellites. In view of the lack of oscillator noise analysis on the dual transponder ranging model, a comprehensive analysis of oscillator noise effects on ranging accuracy is provided. First, the dual transponder ranging system is described with emphasis on the detailed analysis of oscillator noise on measurement precision. Then, a high-fidelity numerical simulation approach based on the power spectrum density of an actual ultra-stable oscillator is carried out in both frequency domain and time domain to support the presented theoretical analysis. The simulation results under different conditions are consistent with the proposed concepts, which makes the results reliable. Besides, the results demonstrate that a high level of accuracy can be achieved by using this oscillator noise cancelation-oriented ranging method.
基金
Project(61106113)supported by the National Natural Science Foundation of China