期刊文献+

Tent混沌人工蜂群与粒子群混合算法 被引量:30

Hybridization algorithm of Tent chaos artificial bee colony and particle swarm optimization
原文传递
导出
摘要 针对人工蜂群和粒子群算法的优势与缺陷,提出一种Tent混沌人工蜂群粒子群混合算法.首先利用Tent混沌反向学习策略初始化种群;然后划分双子群,利用Tent混沌人工蜂群算法和粒子群算法协同进化;最后应用重组算子选择最优个体作为跟随蜂的邻域蜜源和粒子群的全局极值.仿真结果表明,该算法不仅能有效避免早熟收敛,而且能有效跳出局部极值,与其他最新人工蜂群和粒子群算法相比具有较强的全局搜索能力和局部搜索能力. In view of the advantages and disadvantages of artificial bee colony(ABC) algorithm and particle swarm optimization(PSO) algorithm, a hybridization algorithm of Tent chaos artificial bee colony and particle swarm optimization (HTCAP) is proposed. In the HTCAE an initialization strategy based on Tent chaotic opposition-based learning is applied. All individuals are divided into two sub-swarms by cooperative evolution with Tent chaos artificial bee colony(TCABC) algorithm and Tent chaos particle swarm optimization(TCPSO) algorithm. The best solution obtained by the recombination operator is as the neighbor food source for onlooker bees and the global best of particle swarm, respectively. Simulation results show that, the algorithm not only effectively avoids the premature convergence, but also gets rid of the local minimum. By comparison with the other latest algorithms based on the ABC algorithm and PSO algorithm, the proposed model has better global and local searching abilities.
出处 《控制与决策》 EI CSCD 北大核心 2015年第5期839-847,共9页 Control and Decision
基金 国家自然科学基金项目(61373063 61233011 61402227) 湖南省科技计划项目(2013FJ4217)
关键词 Tent混沌搜索 人工蜂群算法 粒子群优化算法 混沌反向学习 重组算子 Tent chaos search artificial bee colony: particle swarm optimization chaotic opposition-based learning recombination operator
  • 相关文献

参考文献19

  • 1Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 2Akay B. Performance analysis of artificial bee colony algorithm on numerical optimization problems[D]. Kayseri: Graduate School of Natural and Applied Sciences, Erciyes University, 2009.
  • 3Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(6): 120-142.
  • 4高卫峰,刘三阳,黄玲玲.受启发的人工蜂群算法在全局优化问题中的应用[J].电子学报,2012,40(12):2396-2403. 被引量:45
  • 5Zhu G P, Sam K. Gbestguided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
  • 6暴励,曾建潮.自适应搜索空间的混沌蜂群算法[J].计算机应用研究,2010,27(4):1330-1334. 被引量:46
  • 7Alatas B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications, 2010, 37(8): 5682-5687.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948.
  • 9陶新民,刘福荣,刘玉,童智靖.一种多尺度协同变异的粒子群优化算法[J].软件学报,2012,23(7):1805-1815. 被引量:48
  • 10吴晓军,杨战中,赵明.均匀搜索粒子群算法[J].电子学报,2011,39(6):1261-1266. 被引量:56

二级参考文献62

共引文献528

同被引文献274

引证文献30

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部