期刊文献+

基于两层分类器的抗微生物肽种类预测 被引量:2

USING TWO-LAYER CLASSIFIER TO PREDICT THE ANTIMICROBIAL PEPTIDES
原文传递
导出
摘要 抗微生物肽是由宿主产生的一类能够抵御外界病原体感染的小分子多肽,由于其特殊的防御机制和不易产生抗药性,已经成为医学与生物学研究的热点。抗微生物肽应用于医学主要依靠其独特的生物学功能,所以从其功能层面对抗微生物肽进行预测十分必要。本文选取氨基酸组分和伪氨基酸组分信息为特征向量,分别利用随机森林(RF)和k-近邻(KNN)算法,采用两层分类器对抗微生物肽种类进行预测,第一层分类器预测是否为抗微生物肽,成功率达到93.14%,第二层分类器针对抗微生物肽的五种生物学功能进行分类预测,成功率达到83.65%。 Antimicrobial peptides( AMPs) are a kind of micro- molecule polypeptide defences of most living organisms against invading pathogens. Because they have special defence mechanism,and the resistance of microbes can not easily to be formed,AMPs have become the hot topics in the study of medicine and biology. AMPs used in medicine rely on its unique biological features,so from the aspects of its biological activities to predict AMPs is necessary. In this paper,amino acid composition( ACC) and Pseudo amino acid composition( PAAC) were chose as features,two excellent algorithms of Random Forest( RF) and k- Nearest Neighbors( KNN) were proposed to predict the antimicrobial peptides by using two- layer of classifier,the first layer of classifier is applied to predict whether a protein is AMP or not,the predictive accuracy is 93. 14%,and the second classifier is proposed to divide AMPs into five groups with diverse biological activities,the best accuracy is 83. 65%.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2014年第4期148-152,共5页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 国家自然科学基金项目(31360206) 内蒙古自治区自然科学基金项目(2010MS0103) 内蒙古农业大学科技创新团队(NDPYTD2010-7)
关键词 抗微生物肽 伪氨基酸 随机森林 K-近邻 Antimicrobial peptides pseudo amino acid composition random forest k-nearest neighbors
  • 相关文献

参考文献19

  • 1K. V. R. Reddy, R. D. Yedery, C. Aranha. Anitimicrobial peptides : premises and promises [ J ]. International Journal of Antimicrobial Agents. 2004,24 (6) : 536 - 547.
  • 2H. G. Boman, I. Nisson, B. Rasmuson. Inducible antibacterial defense system in Drasophial [ J ]. Nature. 1972,237 : 232 - 235.
  • 3H. G. Boman. Antibacterial peptides: basic facts and emer- ging concepts [ J ] Intern Med. 2003,254 ( 3 ) : 197 - 215.
  • 4X. Xiao,P. Wang, W. Z. Lin, et al. iAMP -2L: a two - level multi - label classifier for identifying antimicrobial peptides and their functional types[J]. Analytical Biochem- istry. 2013, 436 (2) : 168 - 177.
  • 5Z. Wang, G. Wang. APD: the antimicrobial peptide data- base [ J ]. Nucleic Acids Research. 2004,32 ( supppll ) : 590 - 592.
  • 6G. Wang, X. Li, Z. Wang. APD2 : the updated antimicro- bial peptide database and its application in peptide design [ J ]. Nucleic Acids Research. 2009,37 ( suppll ) : 933 - 937.
  • 7W. Chen, L. F. Luo. Classi cation of antimicrobial peptide using diversity measure with quadratic discriminant analysis [ J]. Journal of Microbiological Methods. 2009,78 (1) :94 -96.
  • 8S. Thomas, S. Karnik, R.S. Barai, et. al. Idicula -Thomas. CAMP: a useful resource for research on antimicrobial peptides [ J ]. Nucleic Acids Research. 2010,38:774 - 780.
  • 9张松,黄波,夏学峰,孙之荣.蛋白质亚细胞定位的生物信息学研究[J].生物化学与生物物理进展,2007,34(6):573-579. 被引量:39
  • 10K. C. Chou, H. B. Shen. Predicting Protein Subcellular Lo- cation by Fusing Multiple Classifiers [ J ]. Journal of Cellu- lar Biochemistry. 2006,99 (2) :517 - 527.

二级参考文献50

  • 1钱晓东,王正欧.基于改进KNN的文本分类方法[J].情报科学,2005,23(4):550-554. 被引量:19
  • 2张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 3Huh W K,Falvo J V,Gerke L C,et al.Global analysis of protein localization in budding yeast.Nature,2003,425 (6959):686~691
  • 4Dunkley T P,Watson R,Griffin J L,et al.Localization of organelle proteins by isotope tagging (LOPIT).Mol Cell Proteomics,2004,3(11):1128~1134
  • 5Jiang X S,Dai J,Sheng Q H,et al.A comparative proteomic strategy for subcellular proteome research:ICAT approach coupled with bioinformatics prediction to ascertain rat liver mitochondrial proteins and indication of mitochondrial localization for catalase.Mol Cell Proteomics,2005,4 (1):12~34
  • 6Boeckmann B,Bairoch A,Apweiler R,et al.The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.Nucleic Acids Res,2003,31 (1):365~370
  • 7Mewes H W,Albermann K,Heumann K,et al.MIPS:a database for protein sequences,homology data and yeast genome information.Nucleic Acids Res,1997,25 (1):28~30
  • 8Bigelow H R,Petrey D S,Liu J,et al.Predicting transmembrane beta-barrels in proteomes.Nucleic Acids Res,2004,32 (8):2566 ~2577
  • 9Foster L J,de Hoog C L,Zhang Y,et al.A mammalian organelle map by protein correlation profiling.Cell,2006,125 (1):187~199
  • 10Nakai K,Kanehisa M.Expert system for predicting protein localization sites in gram-negative bacteria.Proteins,1991,11(2):95~110

共引文献38

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部