期刊文献+

应用ARIMA模型对呼吸系统疾病月住院量及住院费用的预测 被引量:23

Application of ARIMA Model on Predicting Monthly Hospital Admissions and Hospitalization Expenses for Respiratory Diseases
下载PDF
导出
摘要 目的应用自回归移动平均模型(autoregressive integrated moving average model,ARIMA)分析和预测上海市居民呼吸系统疾病月住院量及住院费用情况。方法通过对2005-2011年呼吸系统疾病逐月住院人数与费用数据建立ARIMA模型,利用该模型预测2012年1-12月的呼吸系统疾病住院量与住院费用,用平均预测相对误差作为预测效果的评价指标。结果 ARIMA(0,1,1)(0,1,1)12与ARIMA(0,1,1)模型是上海市居民呼吸系统疾病月住院量及住院费用的最优拟合预测模型,用该模型进行回代预测,预测值与实际值吻合程度较高。结论 ARIMA模型较好地模拟了上海市居民呼吸系统疾病月住院量及住院费用在时间序列上的变化趋势,预测结果可为今后呼吸系统疾病的预防和控制提供理论支持。 Objective To analyze and predict the monthly hospital admissions and hospitalization expenses for respiratory diseases in S hanghai by the ARIMA model . Methods We collected monthly data of hospital admissions and hospitalization expenses from January,2005 to January,2011 and used autoregressive integrated moving average model (ARIMA) to analyze and establish prediction model .The data from January, 2012 to December, 2012 was used to evaluate. The average relative errors of prediction were used as indexes to evaluate the predict effect. Results ARIMA(0,1,1)(0,1,1)12 and ARIMA(0,1,1) model accorded with monthly hospital admissions and hospitalization expenses for respiratory diseases in S hanghai. The predicted values had better accord with actual values. Conclusion ARIMA model can be well used to analyze and predict the monthly hospital admissions and hospitalization expenses for respiratory diseases in S hanghai, and to provide scientific evidence for control and prevention of diseases.
出处 《中国卫生统计》 CSCD 北大核心 2015年第2期197-200,共4页 Chinese Journal of Health Statistics
基金 上海市公共卫生重点学科建设计划资助(12GWZX0101) 复旦大学丁铎尔中心(复旦大学全球环境变化研究资助No.EZH1829007/003)
关键词 呼吸系统疾病 时间序列分析 ARIMA模型 预测 Respiratory diseases Time series analysis AR/MA model Prediction
  • 相关文献

参考文献9

二级参考文献68

共引文献113

同被引文献173

引证文献23

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部