期刊文献+

基于bootstrap方法的贝叶斯网络结构学习算法在构建基因调控网络中的应用 被引量:3

The Application of Bayes Network Structure Learning Algorithm Based on Bootstrap Method to the Construction of Gene Regulatory Networks
下载PDF
导出
摘要 目的探讨基于bootstrap重抽样方法的贝叶斯网络结构学习算法构建网络的性能,并将其应用于卵巢癌基因表达谱数据分析。方法通过模拟实验和实例验证本文给出的算法构建网络的有效性,同时将这种算法应用于构建基因调控网络。结果模拟实验显示,在样本量较小的情况下,基于bootstrap算法构建的贝叶斯网络明显优于普通贝叶斯方法构建的网络;实例分析结果也表明,应用本文的方法能够得到有价值的网络结构。结论应用本文给出的算法能够在样本量较少的情况下得出准确度较高的网络,同时能够给出网络结构中各条边置信度的估计值。 Objective To explore the performance of Bayes network structure learning algorithm based on bootstrap method in network construction, and to apply it to the analysis of ovarian cancer gene expression data. Methods The efficiency of the algorithm given in this article was testified with simulation data and gene expression data, and meanwhile this algorithm was used to construct gene regulatory networks. Results Bayes network structure learning based on bootstrap method performed better than the general Bayes network in the case of small sample sizes, as shown in simulation tests; the results of gene expres- sion data analysis also indicated that this algorithm could provide valuable network structures. Conclusion Bayes network struc- ture learning algorithm based on bootstrap method can establish highly precise network models even with small sample sizes, and meanwhile provide the confidence estimates of each edge in the network.
出处 《中国卫生统计》 CSCD 北大核心 2015年第2期217-220,共4页 Chinese Journal of Health Statistics
基金 高等学校博士学科专项基金(20122307110004)
关键词 贝叶斯网络 结构学习 BOOTSTRAP Bayes network Structure learning Bootstrap
  • 相关文献

参考文献14

  • 1游顶云,李康.贝叶斯网络方法在基因调控研究中的应用[J].中国卫生统计,2009,26(1):83-86. 被引量:3
  • 2范丽珺,游顶云,张旺,李康.贝叶斯因果关系网络模型在断面调查数据中的应用[J].中国医院统计,2010(2):97-100. 被引量:3
  • 3虞慧婷,吴骋,柳伟伟,贺佳.基于贝叶斯网络的原发性肝癌预后影响因素相互关系研究[J].中国卫生统计,2008,25(1):10-14. 被引量:2
  • 4Friedman N,Goldszmidt M,Wyner A. Data analysis with Bayesian net- works : A bootstrap approach. Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. , 1999 : 196-205.
  • 5Broom BM, Do KA, Subramanian D. Model averaging strategies for structure learning in Bayesian networks with limited data. BMC Bioin- formatics,2012,13 ( Suppl 13 ) : S10.
  • 6Scutari M. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv :0908. 3817,2009.
  • 7Friedman N, Linial M, Nachman I, Pe' er D. Using Bayesian networks to analyze expression data. J Comput Bio1,2000,7 ( 3-4 ) :601-620.
  • 8Bell D, Berchuck A, Birrer M, et al. Integrated genomic analyses of o- varian carcinoma. Nature,2011,474(7353) :609-615.
  • 9Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA pre- diction server:biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res, 2010,38 ( Web Server is- sue) : W214 -220.
  • 10Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1 : protein- protein interaction networks, with increased coverage and integration. Nucleic Acids Res, 2013,41 ( Database issue) : D808-815.

二级参考文献53

  • 1陆敏强,陈规划,杨扬,蔡常洁,何晓顺,朱晓峰.中国原发性肝癌临床分期预测肝癌肝移植预后的临床研究[J].中华肝胆外科杂志,2005,11(4):224-226. 被引量:4
  • 2曲强,芮静安,王少斌,陈曙光,周立,韩凯,魏学,张宁,赵海涛,程恩成.肝细胞肝癌临床分期系统的比较[J].中华肿瘤杂志,2006,28(2):155-158. 被引量:9
  • 3武建虎,贺佳,贺宪民,张智坚,马修强,吴骋.关联规则及其在肝癌病人资料分析中的应用[J].中国卫生统计,2006,23(1):34-38. 被引量:15
  • 4Werhli AV ,Husmeier D, Grzegorczyk M. Comparative evaluation of reverse engineeringgene regulatory networks with relevance networks, graphical Gaussian models and Bayesiannetworks. Bioinformatics, 2006 (22) :2523-2531.
  • 5Yamanishi Y, Vert JP, Kanehisa M. Protein network inferencefrom multiple genomic data: a supervised approach. Bioinformatics, 2004, 20 (Suppl 1 ) :363-370.
  • 6Kishino H, Waddell PJ. Correspondence Analysis of Genes and Tissue Types and Finding Genetic Links from Microarray Data. In Genome Informatics Edited by: Dunker A, Konagaya A,MiyanoS, TTakagi. Tokyo: Universal Academy Press,2000.
  • 7Werhli AV, Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol,2007,6 :Articlel5.
  • 8Sachs K, Perez O,Pe'er D, et al. Causal protein signaling networks dedved from multiparameter single-cell data. Science, 2005,308,523 - 529.
  • 9Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. Journal of Computational Biology, 2000, 7 (3) :601-620.
  • 10Pe'er D,Regev A,Elidan G,et al. Inferring subnetworks from perturbed expression profiles. Bioinformatics ,2001,17 ( Suppl 1 ) : S215-S224.

共引文献5

同被引文献19

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部