期刊文献+

多重填补法在任意缺失随访资料中的应用 被引量:10

Multiple Imputation Method Used in Arbitrary Missing Follow-up Data
下载PDF
导出
摘要 目的比较任意缺失模式下不同填补方法在随访资料缺失数据中的多重填补效果。方法结合我国外周动脉疾病患者踝臂指数(ankle brachial index,ABI)等基线及六年随访数据,通过SAS9.3/MI过程,分别采用马尔可夫链蒙特卡罗(markov chain monte carlo,MCMC)、回归分析、判别分析(discriminant analysis)和logistic回归等方法,实现生存时间、生存结局变量缺失值的填补,并作综合分析及比较。结果得到不同填补方法、不同填补次数多重填补后的生存时间和结局变量完全数据集,并对总体参数作出估计和统计,计算各次填补效率等综合评价指标。结论对于多次随访资料中的连续性变量生存时间,采用回归分析方法填补效率较高,填补效率随着填补次数增加而增大,对于缺失率小的变量填补效率更高。 Objective To evaluate the multiple imputation effect of different imputation methods in arbitrary missing data of follow-up research. Methods Using different methods including Markov chain Monte Carlo( MCMC), Regression, dis- criminant analysis and logistic regression and SAS9. 3/MI process ,to make the comprehensive analysis and comparison for miss- ing values imputation. The real data come from a 6 years follow -up research including peripheral arterial disease patients' infor- mation and ankle brachial index (ABI) data. Results Including population parameters estimation and statistics inference of con- tinuous variables, frequency calculation of classified variables, based on different imputation methods and imputation numbers. Conclusion In the continuous variables such as survival time, Regression method has the largest imputation efficiency, and the efficiency increases with the increase of imputation number and decrease of the missing rate.
出处 《中国卫生统计》 CSCD 北大核心 2015年第2期221-223,共3页 Chinese Journal of Health Statistics
基金 国家自然科学基金青年项目(81102203/H2611)
关键词 多重填补MI 任意缺失模式 缺失数据 随访研究 Multiple imputation MI Arbitrary missing model Missing data Follow-up study
  • 相关文献

参考文献8

  • 1Abraham, Todd W, Russell, et al. Missing data: a review of current meth- ods and applications in epidemiological research. Current Opinion in Psychiatry,2004,17 (4) :315-321.
  • 2James M, Robins, Wang N. Inference for imputation estimators. Biometri- ka,2000,87 ( 1 ) : 113-124.
  • 3Little RJ,Rubin DB. Statistical Analysis with Missing Data. New York: John Wiley & Sons, 1987.
  • 4张桥,李宁,张秋菊,刘美娜.任意缺失模式缺失数据不同填补方法效果比较[J].中国卫生统计,2013,30(5):690-692. 被引量:7
  • 5花琳琳,施念,杨永利,赵天仪,施学忠.不同缺失值处理方法对随机缺失数据处理效果的比较[J].郑州大学学报(医学版),2012,47(3):315-318. 被引量:22
  • 6Combining Inferences from Multiple Imputed Data Sets. SAS/STAT 9 User' s Guide, North Carolina : SAS Institute Inc,2002:211-213.
  • 7Schafer JL, Maren kO. Multiple imputation for multivariate missing-data problems: a data analysis "s perspective. Multivariate Behavioural Re- search, 1998,33 : 545.
  • 8http ://support. sas. com/md/app/stat/procedures/mi, html.

二级参考文献14

  • 1殷杰,石锐.SAS中处理数据集缺失值方法的对比研究[J].计算机应用,2007,27(B06):438-439. 被引量:9
  • 2Barnard J,Meng XL. Applications of muhiple imputation in medical studies: from AIDS to NHANES[ J ]. Stat Methods Med Res,1999,8(1):17.
  • 3Amold AM, Kronmal RA. Multiple imputation of baseline data in the cardiovascular health study. American Journal of Epidemiology, 2003, 157( 1 ) :74-84.
  • 4Abraham, Todd W, Russell, et al. Missing data: a review of current methods and applications in epidemiological research. Current Opinion in Psychiatry ,2004,17 (4) :315-321.
  • 5James M, Robins, Wang N. Inference for imputation estimators. Bi- ometrika ,2000,87 ( 1 ) : 113 -124.
  • 6Little ILl, Rubin DB. Statistical Analysis with Missing Data. New York: John Wiley&Sons, 1987.
  • 7Little RJ, Rubin DB. Statistical Analysis with Missing Data. 2rid ed. Hoboken, NJ: John Wiley&Sons,2002.
  • 8李新华,夏结来.多重填补处理有缺失数据的2×2交叉设计资料的应用.2004中国卫生统计学术会议论文集,2004:181-187.
  • 9Collins LM, Schafer JL, Kam CM. A comparison of inclusive and re- strictive strategies in modem missing data procedures. Psychol Meth- ods.2001.6(4) :330-351.
  • 10李宁.钙干预试验骨密度缺失值的填补研究.哈尔滨医科大学硕士毕业论文,2010.

共引文献27

同被引文献70

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部