期刊文献+

基于隐马尔可夫模型对原核生物编码序列的识别

The Coding Sequence Recognition of Prokaryote Based on Hidden Markov Model
下载PDF
导出
摘要 目的探讨隐马尔可夫模型在大肠杆菌编码序列识别中的应用,为生物信息挖掘、致病位点研究提供方法参考。方法对大肠杆菌训练集数据进行训练建模,并对测试序列进行识别,用特异度、灵敏度以及精确度三个指标进行评价。结果利用本试验的方法识别编码序列的灵敏度为73.33%,特异度为67.78%,精确度为70.56%。结论隐马尔可夫模型能很好地模拟离散状态间的转换,适用于识别有状态转移、线性序列的数据。 Objective To explore the identification of Escherichia coli coding sequence with Hidden Markov Model, so as to provide methods for the research of mining biological information and pathogenic loci. Methods We train the data set of Escherichia coli to model and identify the test set, and then evaluate the results using specificity, sensitivity and accuracy. Results The specificity is 67.78% ,the sensitivity is 73.33% and the accuracy is 70. 56% based on the method of the paper. Conclusion Hidden Markov Model can simulate the transformation of the discrete state very well, applied to identify the data of trans- formation state and linear sequence.
出处 《中国卫生统计》 CSCD 北大核心 2015年第2期254-256,共3页 Chinese Journal of Health Statistics
基金 国家自然科学基金资助项目(31071156)
关键词 隐马尔可夫模型 编码区序列识别 大肠杆菌 Hidden markov model Coding region recognition Escherichia coli
  • 相关文献

参考文献7

  • 1Goel N, Singh S, Aseri TC. A Review of Soft Computing Techniques for Gene Prediction. ISRN Genornics ,2013,2013.
  • 2罗泽举,李艳会,宋丽红,朱思铭.基于隐马尔可夫模型的DNA序列识别[J].华南理工大学学报(自然科学版),2007,35(8):123-126. 被引量:7
  • 3Stormo G. Gene-finding approaches for eukaryotes. Genome research, 2000,10(4) :394-397.
  • 4潘海燕,丁元林,胡利人,孔丹莉.隐Markov模型及其在慢性病流行病学研究中的应用[J].中国卫生统计,2009,26(1):38-40. 被引量:11
  • 5Baum LE, Egon JA. An inequality with applications to statistical estima- tion for probabilistic functions of a Markov process and to a model for e- cology. Bull Amer, Meterol, SOC, 1967,73 : 360-363.
  • 6Baum LE, Sell GR. Growth functions for transformations on manifolds. Pac, J, Math, 1968,27 ( 2 ) : 211-227.
  • 7Tompa M, Li N, Bailey TL, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol, 2005,1 (23) :137-144.

二级参考文献18

  • 1史良,尉春艳,高琦.应用HMM和加权距离判别法的真核基因识别程序研究[J].中国生物医学工程学报,2005,24(1):74-79. 被引量:4
  • 2Bahl LR, Jelinek F. Decoding for channels with Insertions, Delections, and Substititions with Applications to Speech Recognition. IEEE Trans. IT, 1985,21 (2) :404-411.
  • 3Pfau T, Ferrari M, Parsons K, et al. A hidden Markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data. J Biomeeh,2008,41 ( 1 ) :216-220.
  • 4Chauhan S, Wang P, Sing Lim C, et al. A computer-aided MFCC-based HMM system for automatic auscultation. Comput Biol Med, 2008,38 (2) :221-233.
  • 5Kundu A, He Y, Bahl P . Recognition of Handwrriten Word. First and Second Order Hidden Markov Model Based Approach. Pattern Recognitinn, 1989,22 ( 3 ) :293-297.
  • 6Baum L E,Egon J A.An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology[J].Bulletin of American Meteorological Society,1967,73 (2):360-363.
  • 7Baker J K.The dragon system-an overview[J].IEEE Trans Acoust Speech Signal Processing,1975,23 (1):24-29.
  • 8Schlapbach A,Bunke H.Using HMM based recognizers for writer identification and verification[J].Frontiers in Handwriting Recognition,2004,107 (1):167-172.
  • 9Krogh A.Two methods for improving performance of an HMM and their application for gene finding[C]//Proceedings of the 5th International Conference on Intelligent Systems for Molecular Biology (ISMB).Halkidiki Greece:the University of Patras,1997:179-186.
  • 10Gough J,Chothia C.Superfamily:HMMs representing all proteins of known structure.SCOP sequence searches,alignments and genome assignments[J].Nucleic Acids Res,2002,30 (1):268-272.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部