期刊文献+

基于偏最小二乘分析的FDR估计研究 被引量:1

The Research of False Discovery Rate Estimation of Statistical Analysis Based on Partial Least Squares
下载PDF
导出
摘要 目的基于偏最小二乘模型(PLS)提出一种新的FDR估计方法,并对其准确性进行验证。方法利用偏最小二乘的vip评分筛选变量,结合permutation方法和后退法对筛选结果进行FDR估计。结果模拟实验表明,在变量之间独立时,PLS-FDR方法和三种单变量估计方法都能准确估计FDR;在变量之间存在线性关系时,PLS-FDR方法估计FDR仍然具有无偏性,而三种单变量分析方法则无法准确地进行估计。实例分析表明,PLS-FDR方法对高维数据分析能够提供重要信息。结论在线性数据结构下,使用本文给出的PLS-FDR方法能够得出多变量FDR估计结果。 Objective To provide a new FDR estimation method based on Partial Least Squares (PLS)and to validate its correction as well. Methods We estimated the FDR of feature selection results based on the vip scores obtained by the Partial Least Squares with the permutation and Step-back technique. Results Simulation experiment proved that the PLS-FDR method and three univariate FDR estimation methods have exact estimation results under the independent structure data. But PLS- FDR method had higher accuracy than three univariate FDR estimation methods in dealing with data having liner relationships. Case study proved that PLS-FDR method can provide important information for high dimensional data analysis. Conclusion PLS-FDR method can estimate the multivariate FDR accurately in the data having liner relationships.
出处 《中国卫生统计》 CSCD 北大核心 2015年第2期257-260,共4页 Chinese Journal of Health Statistics
基金 高等学校博士学科专项基金(20122307110004) 国家自然科学基金资助(81172767)
关键词 偏最小二乘 阳性错误发现率 代谢组学 Partial least squares FDR Metabonomics
  • 相关文献

参考文献7

  • 1Benjamini Y, Hochberg Y. Controlling the false discovery rate:a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B ( Methodological), 1995:289-300.
  • 2Dalmasso C, Brret P, Moreau T. A simple procedure for estimating the false discovery rate. Bioinformatics ,2005,21 (5) :660-668.
  • 3Storey J. The positive false discovery rate:A Bayesian interpretation and the q-value. Ann Stat,20O3,31(6) :2013-2035.
  • 4Korbinian S. A unified approach to false discovery rate estimation. BMC bioinformati cs,2008,9:303.
  • 5Boulesteix AL. PLS dimension reduction for classification with high di- mensional microarray data. Statistical Applications in Genetics and Mo- lecular Biology ,2004,3 : article 33.
  • 6刘晋,张涛,李康.多重假设检验中FDR的控制与估计方法[J].中国卫生统计,2012,29(2):305-308. 被引量:15
  • 7Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society : Series B ( Statistical Methodology) ,2002,64 (3) :479- 498.

二级参考文献32

  • 1刘乐平,张龙,蔡正高.多重假设检验及其在经济计量中的应用[J].统计研究,2007,24(4):26-30. 被引量:7
  • 2Dudoit S, van der Laan MJ. Multiple testing procedures with applica- tions to genomics. New York:Springer,2008.
  • 3Juliane Schafer, Korbinian Strimmer. An empirical bayes approach to in- ferring large-scale gene association networks. Bioinformatics, 2005,21 (6) :754-764.
  • 4Dettmer K, Almstetter MF, Appel IJ, et al. Comparison of serum versus plasma collection in gas chromatography-mass-spectrometry-based metabolomics. Electrophoresis,2010,31 (14) :2365-2373.
  • 5Debashis Ghosh. Assessing signifcance of peptide spectrum matches in pro-teomics :a multiple testing approach. Statistics in Biosciences ,2009, 1 (2) :199-213.
  • 6Yoav Benjamini. Discovering the false discovery rate. Journal of the Royal Statistical Society : Series B ( Statistical Methodology ), 2010,72 (4) :405-416.
  • 7Benjamini Y, Hochberg Y. Controlling the false discovery rate:a practi- cal and powerful approach to multiple testing. J. R. Statist. Soc. B, 1995,57( 1 ) :289-300.
  • 8Yekutieli D, Benjamini Y. Resampling based False Discovery Rate con- trolling procedure for dependent test statistics. J. Statist. Planng Inf, 1999,82(1-2) :171-196.
  • 9Benjamini Y, Liu W. A step-down multiple testing procedure that con- trois the false discovery rate under independence. J. Statist. Plann. infer- ence, 1999,82 : 163-170.
  • 10Benjamini Y, Hochberg Y. On the adaptive control of the false discover- y rate in multiple testing with independent statistics. J. Educ. Behav. Statist ,2000,25 ( 1 ) :60-83.

共引文献14

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部