期刊文献+

共挤出型芯—表结构木塑复合材料弯曲性能与热膨胀性能的研究 被引量:1

Flexural and Thermal Expansion Properties of Core-shell Structure Wood Polymer Composites
下载PDF
导出
摘要 以改性玻璃纤维(GF)为表层的增强材料,以共挤出技术为加工工艺,制备了芯-表结构的木塑复合材料,分析了其在芯层1和芯层2两种复合体系下的弯曲和热膨胀性能。结果表明:当表层GF加入量为0时,即为表层为纯高密度聚乙烯(HDPE)时,无论是在芯层1还是芯层2的复合体系,芯—表结构木塑复合材料的线性热膨胀系数(LTEC)高于芯层材料,其弯曲模量和弯曲强度均小于芯层材料;芯—表结构木塑复合材料(GF增强表层)的弯曲强度、模量随着表层GF加入量的增加而增加;芯—表结构木塑复合材料的热膨胀性能是表层和芯层性能共同作用的结果,在表层加入GF后,其表层材料的热膨胀系数和芯—表结构木塑复合材料同时降低,且降低趋势相近。 Experiments were conducted on different modified glass fiber(GF) content on flexural and thermal expansion performance of core-shell structure wood polymer composite(WPC) with GF-filled shells. The result demonstrated that WPC with pure high-density polyethylene(HDPE) shell had higher linear thermal expansion coefficient(LTEC) than the core's, but had lower bending modulus and strength. Bending modulus and strength of the composite increased but LTEC values decreased with increase of the GF loading levels in the shell. The experiments resulted that bending modulus/strength of core-shell structure WPC was greatly enhanced with unfilled- and filled HDPE shells.
出处 《浙江林业科技》 北大核心 2014年第6期40-44,共5页 Journal of Zhejiang Forestry Science and Technology
基金 国家自然科学基金(31300482) 江苏省自然科学基金(BK20130966 BK 20130975) 江苏省优势学科基金(PAPD) 南京林业大学高学历人才基金
关键词 芯—表结构 木塑复合材料 热膨胀 弯曲 core-shell structure wood polymer composites thermal expansion flexural
  • 相关文献

参考文献15

  • 1Saheb D N, Jog J P. Natural fiber polymer composites: A review[J]. Adv Polym Technol, 1999 ( 18 ) : 351 - 363.
  • 2Smith P M, Wolcott M P. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications[J]. For Prod J, 2006, 56 (3) : 4-11.
  • 3Yao F, Wu QL. Coextruded Polyethylene and Wood-Flour Composite: Effect of Shell Thickness,.- Wood Loading, and Core Quality[J]. J Appl Polym Sci, 2010 ( 118 ) : 3594- 3601.
  • 4Huang R Z, Kim B J, Lee S Y, et al. Co-extruded Wood Plastic Composites with talc filled Shells: Morphology, Mechanical and Thermal Expansion Performance[J]. BioResources, 2013, 8 ( 2 ) : 2 283 - 2 299.
  • 5Jin S, Matuana L M. Wood/plastic composites co-extruded with multi-walled carbon nanotube-fiUed rigid poly (vinyl chloride) cap layer[J]. Polym Int, 2010 ( 59 ) : 648 - 57.
  • 6Kim B J, Yao F, Wang Q W, et al. Mechanical and Physical Properties of Core-Shell Structured Wood Plastic Composites: Effect of Shells with Hybrid Mineral and Wood Fillers[J]. Compos Part A, 2013, 45 ( 1 ) : 1 040 - 1 048.
  • 7Huang R Z, Xu X W, Lee S Y, et al. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance[J]. Materials, 2013, 6 ( 9 ) : 4 122 - 4 138.
  • 8Huang R Z, Zhou C J, Zhang Y, et al. Co-extrusion Technology for Functioned Nature Fiber Reinforced Polymer Composites[J]. Adv Mater Res 2013 (773) : 497-501.
  • 9Yang H S, Wolcott M P, Kim H S, et al. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites[J]. J Therm Anal Calorim, 2005 ( 82 ) : 157 - 160.
  • 10Huang R Z, Zhang Y, Xu X W, et al. Effect of hybrid mineral and bamboo fillers on thermal expansion behavior of bamboo fiber and recycled polypropylene-polyethylcne composites[J]. BioResources, 2012, 7 ( 4 ) : 4 563 - 4 574.

同被引文献17

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部