期刊文献+

一类具次二次势能的阻尼振动问题(英文)

On a class of damped vibration problems with sub-quadratic potentials
下载PDF
导出
摘要 应用临界点理论研究了具次二次势能的阻尼振动Hamilton系统的周期解的存在性和多重性,得到了一些新的结果. For the damped vibration Hamihonian systems with sub-quadratic potentials, the existence and multiplicity of periodic solutions was studied by using critical point theory. Some new results were obtained.
出处 《仲恺农业工程学院学报》 CAS 2014年第4期51-56,共6页 Journal of Zhongkai University of Agriculture and Engineering
基金 Supported by the National Natural Science Foundation of China(11401111)
关键词 阻尼振动 次二次势能 解的多重性 鞍点特性 damped vibration problem sub-quadratic potential multiplicity of solutions saddle point character
  • 相关文献

参考文献11

  • 1WU X, CHEN S, TEGN K. On variational methods for a class of damped vibration problems[ J ]. Nonlinear Anal, 2008, 68 ( 6 ) : 1432 - 1441.
  • 2WU X, CHEN J. Existence theorems of periodic solutions for a class of damped vibration problems [ J ]. Applied Math Comt, 2009, 207 ( 1 ) : 230 - 235.
  • 3MENG F J, ZHANG F B. Periodic solutions for some second order systems[ J ]. Nonlinear Anal, 2008, 68 ( 11 ) : 3388 - 3396.
  • 4LI X, WU X, WU K. On a class of damped vibration problems with super-quadratic potentials [ J ]. Nonlinear Anal, 2010, 72 (1): 135-142.
  • 5DINGY. Existence and multiplicity results for homoclinic solu- tions to a class of Hamiltonian systems [ J ]. Nonlinear Anal, 1995, 25(11) : 1095 -1113.
  • 6ZI-IANG Q, LIU C. Infinitely many homoclinic solutions for second order Hamiltonian systems [ J ]. Nonlinear Anal, 2010, 72 (2) : 894 - 903.
  • 7ZOU W, SCHECHTER M. Critical point theory and its applica- tions[ M]. New York:Springer, 2006.
  • 8ZHAO F, WU X. Existence and multiplicity of nonzero periodic solution with saddle point character for some nonautonomous sec- ond-order systems[J]. Math Anal Appl, 2005, 308(2) : 588 - 595.
  • 9WU X. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second-order systems [ J ]. Nonlinear Anal, 2004, 58(7) : 899 -907.
  • 10MAWHIN J, WILLEM M. Critical point theory and Hamiltonian systems[M]. New York: Springer, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部