期刊文献+

充气式返回舱气动热特性研究 被引量:18

Research on Aerodynamic Heating Characteristics of Inflatable Reentry Decelerator
下载PDF
导出
摘要 文章针对航天器返回实时性和经济性的需求,以充气式返回舱为研究对象,研究该飞行器从空间站返回过程中的气动特性,重点分析气动热特性。文章通过引入分子运动论、Kemp-Riddell方法、Linear桥函数等计算方法,建立起该飞行器在自由分子流区、过渡流区和连续流区高超声速情况下的表面热平衡方程,得出了该飞行器返回过程中的驻点热流密度和驻点壁面温度。计算分析了该飞行器最大直径D1和半锥角α等几何尺寸对其气动热特性的影响,得到在一定范围内增大D1和α可以有效减小驻点热流密度和驻点壁面温度,并研究在峰值加热高度附近70km、80km处不同马赫数下的气动热特性。在此基础上,依据热防护系统材料和布局,将气动加热计算的表面热流分布作为外壁边界条件,分析了结构材料层的温度变化特性。 According to the requirement of real-time reentry for a spacecraft, this paper presents a detailed analysis of aerodynamics for Inflatable Reentry Decelerator's reentry from the International Space Station, during which aerodynamic heating is especially considered. Based on the heat transfer calculation methods, theory of molecular motion, Kemp-Riddell and Linear bridge functions, the heat transfer simulation models are established in free-stream regime, transitional flow regime, and continuum regime of hypersonic condition, and the heat flux of stagnation can be calculated, as well as stagnation temperature. The effects of the structural parameters such as maximum diameter of D1 and half cone angle a on the characteristics of aerodynamic heating are analyzed and it is demonstrated that stagnation heat flux and temperature can be reduced apparently as D1 and a increase to some extent. For the area near the peak stagnation heating, the heights 70km and 80km are chosen to be specially studied on their characteristics of aerodynamic heating as the Mach number increases. The thermal protection system (TPS) materials are chosen and arranged. According to the layout, temperatures at various layers are calculated with the surface heat flux distribution as outer boundary condition.
出处 《航天返回与遥感》 2014年第4期17-25,共9页 Spacecraft Recovery & Remote Sensing
关键词 充气展开 再入 减速 气动热特性 航天返回 inflatable reentry deceleration aerodynamic heating characters spacecraft recovery
  • 相关文献

参考文献17

  • 1贺卫亮,才晶晶,汪龙芳,张碧辉,康甜.一次发射多次返回的充气式再入飞行器技术[J].载人航天,2011,17(4):37-42. 被引量:17
  • 2Hughes S J, Dillman R A, Starr B R, et al. Inflatable Reentry Vehicle Experiment (IRVE) Design Overview[J]. AIAA Paper, No. 1636: 23-26, 2005.
  • 3陈国良,高树义.中国航天器回收着陆技术50年成就与展望[J].航天返回与遥感,2008,29(3):27-32. 被引量:5
  • 4唐伟,桂业伟,王安龄,毛梅良.充气气囊减速方案的气动设计研究[J].宇航学报,2007,28(2):265-268. 被引量:7
  • 5Lindell M C, Hughes S J, Dixon M, et al. Structural Analysis and Testing of the Inflatable Reentry Vehicle Experiment (IRVE)[J]. AIAA Paper, No. 1699: 1-4, 2006.
  • 6王希季. 航天器进入与返回技术. 北京: 中国宇航出版社, 2009.
  • 7黄志澄.航天空气动力学[M].北京:中国宇航出版社,2005.
  • 8赵汉元.飞行器再人动力学和制导[M].湖南:国防科技大学出版社,1997:26,94—95,100.
  • 9钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2009.
  • 10Lichodziejewski D, Kelly C, Tutt B, et al. Design and Testing of the Inflatable Aeroshell for the IRVE-3 Flight Experiment[J]. AIAA Paper, No. 1515, 2012.

二级参考文献30

  • 1陈伟芳,李壮,龙万花.二维Rayleigh Bénard对流系统非线性特征的DSMC研究[J].航空学报,2006,27(3):365-369. 被引量:1
  • 2Kolodziej P. Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nosetips, NASA-TM-11204[R]. NASA, 1997.
  • 3Kontinos D. A coupled fluid-, structural-heating analysis method for metallic thermal protection panels, AIAA-1996-1808[R]. AIAA, 1996.
  • 4Quinn R D, Gong L. A method for calculating transient surface temperatures and surface heating rates for high-speed aircraft, NASA-TP-2000-209034[R]. NASA, 2000.
  • 5Riley N. Unsteady heat transfer for flow over a flat plate[J].J Fluid Mech, 1963,17( 1 ) : 97-104.
  • 6Chao B T, Cbeema L S. Unsteady heat transfer in laminar boundary layer over a fiat plate[ J]. Internat J Heat Mass Transfer, 1958,11(9) : 1311-1324.
  • 7Rebay M, Padet J. Laminar boundary-layer flow over a semi-infinite plate impulsively heated or cooled[ J ]. Eur Phys J AP, 1999,7 (3) : 263-269.
  • 8Polidori G, Padet J. Transient laminar forced convection with arbitrary variation in the wall heat flux[J] . Heat and Mass Transfer,2002,38(4/5) :301-307.
  • 9Cheng W T, Lin H T. Non-similarity solution and correlation of transient heat transfer in laminar boundary layer flow over a wedge[ J]. International Journal of Engineering Science,2002,40(5 ). 531-548.
  • 10Rebay M, Padet J. Transient laminar forced convection from a wedge flow[J].Internat Comm Heat Mass Transfer,2004,31(4) : 537-548.

共引文献39

同被引文献100

引证文献18

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部