摘要
In this article, we have performed B3LYP/6-31+G(d) calculations of geometrical and reaction enthalpies of antioxidant mechanisms for ADPHT 1-4 (3-alkyl-4-phenylacetylamino-lH-1,2,4-triazol-5-ones) and its derivatives: HAT (hydrogen atom transfer), SET-PT (single electron transfer-proton transfer) and SPLET (sequential proton-loss electron transfer) were investigated in gas and solution-phases. Solvent contribution to enthalpies was computed employing integral equation formalism IEF-PCM (integral equation formalism method) method. It turned out that the lowest BDEs (bond dissociation energies) is obtained for C-H bonds due to captodative effect in various media. Results indicate that HAT mechanism represents the most anticipated process in gas-phase from thermodynamic point of view. But, the SPLET represents the thermodynamically preferred reaction pathway in solvents (2-propanol, acetonitrile, DMF (N,N-dimethylformamide) and water). The authors showed that bond dissociation energies, IP (ionization potential) and PA (proton affinity) are sufficient to evaluate the thermodynamically preferred mechanism.