期刊文献+

基于几何特征分析的路面裂缝分类算法研究 被引量:12

Pavement cracks classification algorithm based on geometry feature analysis
下载PDF
导出
摘要 道路裂缝是评价公路质量的一个非常重要的指标,不同的裂缝类型关系到不同的危急程度及不同的修补策略的制定。针对高速公路中常见的横向裂缝、纵向裂缝、块状裂缝及龟裂裂缝,提出了一种基于方向及密度特征的路面裂缝分类方法。文中所提方法的主要思想是利用裂缝在方向以及密度分布上的差异性来对裂缝类型进行划分。基本的过程是首先利用方向性特征进行横纵裂缝与块状/龟裂裂缝的提取,其次,根据分布密度特性进一步甄别块状和龟裂裂缝。为了验证文中所提算法的有效性,采用大量实测数据进行测试,通过与其它算法进行对比,结果表明:文中所提方法具有更高的裂缝分类精度。 The cracks of the road is a very important index to assess the quality of a road, since the different classes of the cracks are closely related to evaluate the dangerous degree of the road and the design of the repair strategy. Focusing on the common cracks including horizontal, vertical, block shape and chap cracks, a cracks classification method based on orientation and density characters was described.The main idea of the proposed method was to adopt the differences of the orientation and density distribution of the cracks to distinguish the different cracks. The orientation feature was first utilized to classify the direction cracks and non-direction cracks, and then by using the density feature to distinguish the block and the chap cracks. In order to check the effectiveness of the proposed method in this paper,using a large number of practical test data, by comparing with other algorithms, the results show that this proposed method has higher classification accuracy.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第4期1359-1364,共6页 Infrared and Laser Engineering
基金 湖北省高等学校优秀中青年科技创新团队计划(T201431) 地理空间信息工程国家测绘地理信息局重点实验室开放研究基金(201110)
关键词 裂缝分类 几何特征 路面图像 cracks classification geometry feature pavement image
  • 相关文献

参考文献7

  • 1Saar T, Talvik O. Automatic asphalt pavement crack detection and classification using neural networks [C]//12th Biennial Baltic Electronics Conference(BEC), 2010, 345-348.
  • 2李刚,贺昱曜.不均匀光照的路面裂缝检测和分类新方法[J].光子学报,2010,39(8):1405-1408. 被引量:21
  • 3Gavil6n M, Balcones D, Marcos O, et al. Adaptive road crack detection system by pavement classification [J]. Sensors, 2011, 11(10), 9628-9657.
  • 4Lihao Hong. Pavement information system : detection, classification and evaluation [D]. USA: The University of Toledo, 2009.
  • 5Oliveira H, Correia P L. Automatic road crack detection and characterization [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 155-168.
  • 6谭东杰,张安.方向相关与互信息加权组合多模图像配准方法[J].红外与激光工程,2013,42(3):836-841. 被引量:5
  • 7R C Gonzalez, R E Woods. Digital Image Processing [M] Beijing: Publishing House of Electronics Industry, 2003.

二级参考文献20

  • 1谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64. 被引量:27
  • 2惠建江,刘朝晖,刘文.数学形态学在红外多弱小目标提取中的应用[J].光子学报,2006,35(4):626-629. 被引量:26
  • 3Zitova'B, F/usser J. Image registration methods: a survey/J/. Image and Vision Computing, 2003, :21: 977-1000.
  • 4Kim Y S, Lee J H. Multi-sensor image registration based on intensity and edge orientation information [J]. Pattern Recognition, :2008, 41 ( 11 ): 3356-3365.
  • 5Pluim J P W, Maintz J B A. Mutual information based registration of medical images: a survey[J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 986-1004.
  • 6Studholme, Hill D L G, Hawkes D J. An overlap invariant entropy measure of 3D medical image alignment [J]. Pattern Recognition, 1999, 32(1): 71-86.
  • 7Rueckert D. Non-rigid registration using higher-order mutual information[C]//SPIE, 2000, 3979: 438.
  • 8Russakoff D B, Tomasi C. Image similarity using mutual information of regions [J]. Computer Vision-ECCV, 2004: 596-607.
  • 9Pluim J P W. Image registration by maximization of combined mutual information and gradient information [J]. IEEETransactions on Medical Imaging, 2000, 19(8): 809-814.
  • 10Liu Zhaoying, Zhou Fugen, Bai Xiangzhi, et al. Multi-modal image registration by mutual information based on optimal region selection [C]//2010 International Conference on Information Networking and Automation (ICINA), 2010, 2: V2-249-V2-253.

共引文献24

同被引文献85

  • 1王学智,于天彪,孙雪,张校通,王宛山.基于有限差分法的磨削温度场模拟[J].中国工程机械学报,2015,0(2):124-129. 被引量:5
  • 2杨明,尹勇,彭玉华,周新虹.Beamlet变换与多尺度线特征提取[J].电子学报,2007,35(1):100-103. 被引量:12
  • 3Oh J K,Jang G,Oh S,et al.Bridge inspection robot system with machine vision[J].Automation in Construction,2009,18(7).
  • 4Lee J H,Lee J M,Kim H J,et al.Machine vision system for automatic inspection of bridges[A].Image and Signal Processing,2008.CISP'08.Congress on.IEEE[C].2008.
  • 5CHEN H D, MIYOJ1M M. Automatic pavement distress detection system [ J ]. Information Sciences, 1998, 108(1-4) : 219-240.
  • 6ZOU Q, CAO Y, LI Q Q, et al. Crack Tree: Automatic crack detection from pavement images [ J ]. Pattern Recognition Letters, 2012, 33 (3): 227-238.
  • 7KOCH C, GEORGIEVA K, KASIREDDY V, et al. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure [ J ]. Advanced Engineering Informatics, 2015, 29(2) : 196-210.
  • 8OLIVEIRA H, CORREIA P L. Automatic road crack detection and characterization [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 ( 1 ): 155-168.
  • 9BRAY J, VERMA B, LI X, et al. A neural network based technique for automatic classification of road cracks[C]. IEEE International Joint Conference on Neural Networks (IJCNN) , 2006 : 907-912.
  • 10XU W, TANG Z M, ZHOU J, et al. Pavement crack detection based on saliency and statistical features [ C ]. IEEE International Conference on Image Processing (ICIP) , 2013: 4093-4097.

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部