期刊文献+

柔性作业车间调度优化的改进模拟退火算法 被引量:3

Modified simulated annealing algorithm for flexible job-shop scheduling problem
下载PDF
导出
摘要 针对柔性作业车间调度问题,提出一种改进模拟退火算法来进行求解。该算法引入粒子群算法中的基于位置取整和基于轮盘赌两种个体编码方法,并采用3种不同的局部搜索方法来构造个体的邻域结构。算例计算表明,改进模拟退火算法在求解柔性作业车间调度问题时,比粒子群算法、混合粒子群算法以及模拟退火算法具有更好的求解性能,其中采用轮盘赌编码时,算法的求解性能要优于采用位置取整时的求解性能,且基于互换的局部搜索方法要优于其他两种局部搜索方法,能更有效地改善算法的求解性能。 A modified simulated annealing algorithm was put forward to resolve the flexible job-shop scheduling problem,which used two kinds of individual encoding method respectively based on particle position rounding and roulette probability assignment in particle swarm algorithm.Three different local search methods were employed to constitute the neighborhood structure.The computational results show that the modified simulated annealing algorithm is more effective than particle swarm algorithm,hybrid particle swarm algorithm and simulated annealing algorithm in resolving the flexible job-shop scheduling problem.Compared with the position rounding encoding method,the rouletteprobability-assignment-based encoding method can render the algorithm more effective,and the local search method based on crossing-over operation is better than the other two search methods in improving the solving performance of the algorithm.
出处 《武汉科技大学学报》 CAS 北大核心 2015年第2期111-116,共6页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(70801047 71372202) 中央高校基本科研专项基金资助项目(2013-IV-057)
关键词 柔性作业车间调度 JOB SHOP 模拟退火算法 轮盘赌 局部搜索 flexible job-shop scheduling problem job Shop simulated annealing algorithm roulette se-lection local search
  • 相关文献

参考文献12

  • 1Laarhoven P J M, Aarts E, Lenstra J K. Job shop scheduling by simulated annealing[J]. Operations Research, 1992,40(1) .. 113-125.
  • 2Jamili A, Shafia M A, Tavakkoli-Moghaddam R. A hybridization of simulated annealing and electro- magnetism-like mechanism for a periodic job shop scheduling problem[J]. Expert Systems with Appli- cations, 2011,38 : 5895-5901.
  • 3Zhang R, Wu C. A simulated annealing algorithm based on block properties for the job shop schedu- ling problem with total weighted tardiness objective [J]. Computers Operations Research, 2011,38 : 854-867.
  • 4Dai M, Tang D B, Giret A, et al. Energy-efficient scheduling for a flexible flow shop using an im- proved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2013,29:418-429.
  • 5Elmi A, Solimanpur M, Topaloglu S, et al. A simula- ted annealing algorithm for the job shop cell schedu- ling problem with intercellular moves and reentrant parts [J]. Computers Industrial Engineering, 2011,61:171-178.
  • 6Zhang R,Wu C. A hybrid immune simulated annea- ling algorithm for the job shop scheduling problem [J]. Applied Soft Computing, 2010,10 : 79-89.
  • 7Jolai F,Asefi H,Rabiee M,et al. Bi-objective simu- lated annealing approaches for no-wait two-stage flexible flow shop scheduling problem [J]. Scientia Iranica E,2013,20(3) :861-872.
  • 8Shahsavari-Pour N,Ghasemishabankareh B. A novel hybrid meta-heuristic algorithm for solving multi objective flexible job shop scheduling[J]. Journal of Manufacturing Systems, 2013,32 : 771-780.
  • 9梁旭,黄明,常征.求解车间调度问题的一种新遗传退火混合策略[J].计算机集成制造系统,2005,11(6):851-854. 被引量:21
  • 10蓝萌,徐汀荣,黄斐.使用混合邻域搜索算法求解多目标柔性JSP问题[J].计算机工程与设计,2011,32(1):293-296. 被引量:6

二级参考文献19

共引文献25

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部