摘要
利用著名的Gerschgorin圆盘定理,给出了非负矩阵A与非奇异M-矩阵B的逆矩阵B-1的Hadamard积AB-1的谱半径ρ(AB-1)两个新的上界估计式,利用τ(B)=1ρ(B-1)这一性质,从而得到M-矩阵B最小特征值的两个新下界估计式.算例表明,所得的估计式在一定条件下优于现有的估计式,且这些估计式只依赖于矩阵的元素,容易计算.
Two new upper bounds for the spectral radiusρ(A°B-1)for the Hadamard product of a nonnegative matrix A and the inverse of a nonsingular M-matrix B are discussed by applying the famous Gerschgorin disc theorem.On the basis of the results ofτ(B)=1/ρ(B-1),two new lower bounds of the minimum eigenvalue for a nonsingular M-matrix are obtained.The given numerical example shows that these new formulae improve several existing results in some cases and these new estimating formulae are only depending on the entries of matrix and are easy to calculate.
出处
《河南大学学报(自然科学版)》
CAS
2015年第2期134-138,共5页
Journal of Henan University:Natural Science
基金
国家自然科学青年基金(61300123)
河南城建学院校科学研究项目(2014JYB018)