期刊文献+

Some Transformation of a Multiple Hypergeometric Series of Lauricella Function of n Variables

Some Transformation of a Multiple Hypergeometric Series of Lauricella Function of n Variables
下载PDF
导出
摘要 This paper deals with an integral transformation involving Whittaker function Mk,m(X) into a multiple hypergeometric series of Lauricella function FA(n) of n variables. A number of known and new transformation and reduction formulae for a hypergeometric function 2F1, Appell function F2, Lauricella function FA(3) and a hypergeometric function of four variables Fp(4) are derived as special cases.
出处 《Journal of Physical Science and Application》 2015年第1期82-86,共5页 物理科学与应用(英文版)
关键词 Whittaker function Lauricella function Laplace transform. 超几何级数 几何函数 积分变换 倍数
  • 相关文献

参考文献10

  • 1Lauricella, G. 1893. "Sulle Funzioni Ipergeometriche a Piu Variabili." Rend. Circ. Mat. Palermo 7: I 11-158.
  • 2Srivastava, H. M., and Manocha, H. L. 1984. A Treatiseon Generating Functions. Halsted Press (Ellis Horwood Limited, Chichester): 3ohn Wiley and sons, New York.
  • 3Pathan, M. A. 1979. "On a Transformation of a General Hypergeometric Series of Four Variables." Nederl, Akad. Wetensch. Proc Ser. A. 82=Indag Math 4._A_l, New York, 171-5.
  • 4Whittaker, E. T. 1903. "An Expression of Certain Known Function as Generalized Hypergeometric Functions." Bull. Amer. Math. Soc. 10: 125-134.
  • 5Whittaker, E. T., and Watson, G. N. 1990. A Course of Modern Analysis, 4th ed. Cambridge, England.Cambridge University.
  • 6Erdelyi, A., 1954. "Table of integral transforms." Vol.l, McGraw-HilL New York.
  • 7Erdelyi, A. 1948. "Transformation of Hypergeometric Functions of Two Variables." proc. Roy, Soc. Edinburgh Sect. A 62: 378-385.
  • 8Khan, B., and Pathan, M. A. 1982. "Some Transformations of Appell's Function F4." Tamkang J. Math. 13 (1): 25-35.
  • 9Srivastav, H. M., and Karlsson, P. W. 1985. Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester): John Wiley and sons, New York, Chichester Brisbane, Toronto.
  • 10Srivastav, H. M., and Panda, R. 1976. "An Integral Representation for the Product of Two Jacobi Polynomials." J. London Math. Soc. 12 (2): 419-425.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部