期刊文献+

固定翼双旋弹动力学特性分析 被引量:19

Analysis of Dynamic Characteristics of Fixed-wing Dual-spin Projectiles
下载PDF
导出
摘要 固定翼双旋弹作为一种特殊的弹道修正弹,在飞行过程中其前体弹道修正引信(CCF)和后体以不同转速绕弹轴旋转。根据固定翼双旋弹气动不对称的特性,推导出固定翼双旋弹的动力学模型,经过模型简化,得到其非齐次角运动方程,根据这个角运动方程对角运动特性和飞行稳定性进行了分析。结果显示:当CCF转速固定时,转速的大小和滚转的方向都会影响弹体的角运动特性,由于弹体的共振,不合理的转速可能引起角运动的不稳定;当CCF转角固定时,弹体可以获得与CCF的鸭翼安装角近似呈正比的弹道修正能力。对固定翼双旋弹的飞行稳定性判据进行了研究,飞行稳定性判据为固定翼双旋弹前后体转速和初始射角的设计提供了参考。 Fixed-wing dual-spin projectile is a class of trajectory correction projectile, of which the forward course correction fuze (CCF) and aft body can rotate at different spin rates during flight. According to its aerodynamie asymmetry characteristics, the dynamic model of fixed-wing dual-spin projectiles is derived. Nonhomogeneous angular motion equations are calculated by simplifying the model. The angular motion characteristics and stability of fixed-wing dual-spin projectiles are studied based on the angular motion equations. The results show that, when the roll rate of the CCF is constant, the angular motion characteristics of projectile are greatly affected by both the roll rate and rolling direction, and an unreasonable roll rate may cause the instability of angular motion because of the resonance; when the spin angle of the CCF stays at any angular position, the projectile has the course correction ability which is proportional to the installation angle of the canard wings. Ultimately the stability criterion of fixed-wing dualspin projectiles is studied.
出处 《兵工学报》 EI CAS CSCD 北大核心 2015年第4期602-609,共8页 Acta Armamentarii
基金 国家自然科学基金项目(61350010)
关键词 兵器科学与技术 固定翼双旋弹 弹道修正引信 非齐次角运动方程 弹道修正能力 稳定性判据 ordnance science and technology fixed-wingnonhomogeneous angular motion equation course correctiondual-spin projectile course correction fuze ability stability criterion
  • 相关文献

参考文献8

  • 1Costello M, Peterson A. Linear theory of a dual-spin projectile in atmospheric flight[ J]. Journal of Guidance, Control, and Dynam- ics, 2000, 23(5) : 789 -797.
  • 2Wernert P. Stability analysis for canard guided dual-spin stabilized projectiles[ C ] //Proceedings of the AIAA Atmospheric Flight Me- chanics Conference and Exhibit. Honolulu, Hawaii: AIAA,2009.
  • 3Theodoulis S, Morel Y,Wernert P. Modelling and stability analy- sis of the 155 mm spin-stabilised projectile equipped with steering fins[ J ]. International Journal of Modelling, Identification and Control, 2011, 14(3) : 189 -204.
  • 4Theodoulis S, Wernert P. Flight control for a class of 155 mm spin-stabilized projectiles with course correction fuse (CCF) [ C ]// AIAA Guidance, Navigation and Control Conference and Exhibit. Portland, OR: AIAA,2011.
  • 5Theodoulis S, Gassmann V, Wernert P, et al. Guidance and con- trol design for a class of spin-stabilized fin-controlled projectiles [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 517 -531.
  • 6郝永平,孟庆宇,张嘉易.固定翼二维弹道修正弹气动特性分析[J].弹箭与制导学报,2012,32(3):171-173. 被引量:30
  • 7纪秀玲,王海鹏,曾时明,李东光.可旋转鸭舵对旋转弹丸纵向气动特性的影响[J].北京理工大学学报,2011,31(3):265-268. 被引量:31
  • 8常思江,王中原,刘铁铮.鸭式布局双旋弹飞行动力学建模与仿真[J/EB].[2013-01-01].http://www.paper.edu.CD.

二级参考文献16

  • 1姚文进,王晓鸣,高旭东.脉冲力作用下弹道修正弹飞行稳定性研究[J].弹箭与制导学报,2006,26(S1):248-250. 被引量:6
  • 2Storsved D. PGK and the impact of affordable precision on the fires mission[C] ff Proceedings of 43rd Annual Guns & Missiles Symposium. New Orleans: DTIC, 2008.
  • 3薛帮猛.旋转弹丸/导弹马格努斯效应数值计算研究[D].西安:西北工业大学,2005.
  • 4Sahu J, Heavey K R, Buretta R. Numerical computations of transonic flow over a course corrected spinning projectile, AIAA-2008-6740[R]. Hawaii: [s. n. ], 2006.
  • 5Sahu J. Time-accurate computations of free-flight aerodynamics of a spinning projectile with and without flow control, AIAA-2006-6006 [R]. Colorado: [s. n. ],2006.
  • 6DeSpirito J, Plostins P. CFD prediction of M910 projectile aerodynamics: unsteady wake effect on Magnus moment, AIAA-2007-6580 [ R ]. South Carolina:[s. n. ], 2007.
  • 7Su W J, Wilson C, Farina T, et al. Aerodynamic characterization of a canard guided artillery projectile, AIAA-2007-672[R]. Nevada:[s. n. ], 2007.
  • 8Pechier M, Guillen P, Cayzac R. A combined theoretical experimental investigation of Magnus effects, AIAA-1998-2797[R]. Reno:[s. n.], 1998.
  • 9Ji Xiuling, Wang Haipeng, Zeng Shiming, et al. Longitudinal aerodynamics of a canard guided spin stabilized projectile[C],//2010 International Conference Future Industrial Engineering and Application. Shenzhen, China: IEEE Press, 2010:28-31.
  • 10沈仲书;刘亚飞.弹丸空气动力学[M]北京:国防工业出版社,1984.

共引文献45

同被引文献82

  • 1张民权,刘东方,王冬梅,庞艳珂.弹道修正弹发展综述[J].兵工学报,2010,31(S2):127-130. 被引量:61
  • 2赵金强,龙飞,孙航.弹道修正弹综述[J].制导与引信,2005,26(4):16-19. 被引量:43
  • 3Grosso V A. Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same: US, 5425514 [P].1995-06-20.
  • 4Corriveau D, Berner C, Fleck V. Trajectory correction using impulse thrusters for conventional artillery projectiles[C]∥23rd International Symposium on Ballistics Tarragona. Tarragona, Spain:IBC, 2007:639-646.
  • 5Costello M F, Peterson A A. Linear theory of a dual-spinning projectile in atmospheric flight[J].Journal of Guidance, Control, and Dynamics, 2000, 23(5):789-797.
  • 6Burchett B, Peterson A, Costello M F. Prediction of swerving motion of a dual-spinning projectile with lateral pulsejets in atmospheric flight[J].Mathematical and Computer Modeling, 2002, 35(7/8): 821-834.
  • 7Ollerenshaw D, Costello M F. Simplified projectile swerve solution for general control inputs[J].Journal of Guidance, Control, and Dynamics, 2008, 31(5):1259-1265.
  • 8Fresconi F, Plostins P. Control mechanism strategies for spin-stabilized projectiles[J].Journal of Aerospace Engineering, 2010, 224(9):979-991.
  • 9Murphy C H. Instability of controlled projectiles in ascending or descending flight[J].Journal of Guidance and Control, 1981, 4(1): 66-69.
  • 10Wernert P,Theodoulis S. Modelling and stability analysisfor a class of 155 mm spin-stabilized projectiles withcourse correction fuse [R]. AIAA-2011-6269,2011.

引证文献19

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部