期刊文献+

基于约束边长FART-Q的智能决策算法 被引量:1

Intelligent decision-making algorithm based on bounded FART-Q
下载PDF
导出
摘要 针对模糊自适应共振理论(ART)应用于智能决策时存在的问题,提出了约束边长的模糊ART算法.将有边长约束的模糊ART与Q学习结合,构建了约束边长FART-Q(Fuzzy ART-Q learning)智能决策网络.传统的模糊ART只根据输入向量与权值向量的模糊相似度进行分类,在用于智能决策中的状态分类时,不能考虑状态变量的物理含义,存在分类不合理的问题.针对这一问题,提出了对模糊ART的共振条件加入边长约束的改进算法,使得分类时可根据状态变量的物理含义确定分类的边长约束,同时能够减少分类数量.雷区导航仿真实验表明,约束边长FART-Q能快速做出合理决策.改进的模糊ART算法能够使分类更为合理,既能提高决策的成功率,又可以减小决策的运算时间. Fuzzy adaptive resonance theory( ART) with bounded side length was proposed to address the problem emerged while applying fuzzy ART to intelligent decision-making. Integrating the modified fuzzy ART and Q learning algorithm,bounded fuzzy ART-Q learning( FART-Q) intelligent decision-making network was built. The original fuzzy ART might make unreasonable classifications only according to the fuzzy similarity between input vector and weight vector,without considering the physical meaning of the state variables. To solve this problem,a modified algorithm was proposed,strengthening the resonance condition of fuzzy ART with bounded side length. The improvement made it possible both to limit the side length according to the physical meaning of the state variables and to reduce the number of categories. The minefield navigation simulation was conducted to verify the availability and effectiveness of bounded FART-Q. Compared with the original fuzzy ART,the modified algorithm is able to make classifications more reasonably with higher success rate and less operation time.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第1期96-101,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 人工神经网络 自适应共振理论 模糊集理论 Q学习 智能决策 artificial neural network adaptive resonance theory fuzzy set theory Q learning intelligent decision-making
  • 相关文献

参考文献14

  • 1祝世虎,董朝阳,张金鹏,陈宗基.基于神经网络与专家系统的智能决策支持系统[J].电光与控制,2006,13(1):8-11. 被引量:15
  • 2魏强,周德云.基于专家系统的无人战斗机智能决策系统[J].火力与指挥控制,2007,32(2):5-7. 被引量:19
  • 3马耀飞,龚光红,彭晓源.基于强化学习的航空兵认知行为模型[J].北京航空航天大学学报,2010,36(4):379-383. 被引量:14
  • 4杨兴,朱大奇,桑庆兵.专家系统研究现状与展望[J].计算机应用研究,2007,24(5):4-9. 被引量:68
  • 5Ueda H,Naraki T, Hanada N, et al. Fuzzy Q-learning with the modified fuzzy ART neural network [ J ]. Web Intelligence and A- gent Systems, 2007,5 ( 3 ) : 331-341.
  • 6Carpenter G A, Grossberg S, Rosen D B. Fuzzy ART:fast stable learning and categorization of analog patterns by an adaptive res- onance system [ J ]. Neural Networks, 1991,4 ( 6 ) :759-771.
  • 7Hsieh S,Su C L,Liaw J. Fuzzy ART for the document clustering by using evolutionary computation [ J ]. WSEAS Transactions on Computers ,2010,9 ( 9 ) : 1032-1041.
  • 8Song X H, Hopke P K, Bruns M A, et al. A fuzzy adaptive reso- nance theory-supervised predictive mapping neural network ap- plied to the classification of multivariate chemical data[ J]. Che- mometrics and Intelligent Laboratory Systems, 1998,41 ( 2 ) : 161 - 170.
  • 9Li Y Y,Parker L E. Classification with missing data in a wire- less sensor network [ C ]//Southeastcon, 2008. Piscataway, NJ : IEEE ,2008:533-538.
  • 10Ediriweera D D, Marshall I W. Advances in computational algo- rithms and data analysis [ M ]. Netherlands : Springer,2009:293- 304.

二级参考文献32

共引文献111

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部