期刊文献+

Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Driven Cavity with Non-uniform Heating of the Bottom Wall

Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Driven Cavity with Non-uniform Heating of the Bottom Wall
原文传递
导出
摘要 The goal of this article is to study numerically the mixed convection in a differentially heated rid-driven cavity with non-uniform heating of the bottom wall. The velocity field is solved by a hybrid scheme with multiple relaxation time Lattice Boltzmann (MRT-LBM) model, while the temperature field is obtained by resolution of the energy balance equation using the finite difference method (FDM). First, the model is checked and validated using data from the riterature. Validation of the present resuJts with those available in the literature shows a good agreement. A good efficiency in time simulation is confirmed. Thereafter, the model has been applied to mixed convection in a driven cavity with non-uniform heating wall at the fixed Grashof number Gr = 106. It is found that, the heat transfer is weakened as the Richardson number is augmented. For Gr = 106, we note the appearance of secondary vortices at different positions of the cavity corners.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第1期91-100,共10页 理论物理通讯(英文版)
关键词 lattice Boltzmann method (LBM) finite difference method (FDM) heated Lid-driven cavity mixed convection non-uniform heating wall 格子Boltzmann 混合对流换热 加热不均匀 Richardson数 驱动 非均匀加热 模拟 能量平衡方程
  • 相关文献

参考文献38

  • 1D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer, Berlin (2000) p. 308.
  • 2F.J. Higuera, S. Succi, and R. Benzi, Europhys. Lett. 9 (1989) 345.
  • 3R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 22 (1992) 145.
  • 4R. Mei, W. Shyy, D. Yu, and L.S. Luo, J. Comput. Phys. 161 (2000) 680.
  • 5S. Succi, The Lattice Boltzmann for Fluid Dynamics and Beyond, Oxford University Press, Oxford (2001) p. 288.
  • 6O. Filippova and D. Hanel, J. Comput. Phys. 158 (2000) 139.
  • 7T. Lee and C.L. Lin, J. Comput. Phys. 171 (2001) 336.
  • 8F. Kuznik, C. Obrecht, G. Rusaouen, and J.J. Roux, Comput. Math. Appl. 59 (2010) 2380.
  • 9Y. Chen, H. Ohashi, and M.A. Akiyama, Phys. Rev. E 50 (1994) 2776.
  • 10P. Pavlo, G. Vahala, L. Vahala, and M. Soe, J. Comput. Phys. 139 (1998) 79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部