期刊文献+

Nonlocal Symmetry Reductions, CTE Method and Exact Solutions for Higher-Order KdV Equation

Nonlocal Symmetry Reductions, CTE Method and Exact Solutions for Higher-Order KdV Equation
原文传递
导出
摘要 The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlev′e method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems.The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion(CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system. The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlev6 method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems. The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion (CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第2期125-128,共4页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos.11305106,11405110,11305031,and 11275129 the Natural Science Foundation of Zhejiang Province of China under Grant No.LQ13A050001 the Natural Science Foundation of Guangdong Province under Grant No.S2013010011546
关键词 高阶KDV方程 精确解 CTE 局部对称 高阶KDV方程 KDV系统 对称变换 膨胀系数 higher-order KdV equation, nonlocal symmetry, symmetry reduction, CTE method
  • 相关文献

参考文献19

  • 1P.J. Olver, Application of Lie Group to Differential Equa- tion, Springer-Verlag, Berlin (1986).
  • 2G.W. Bluman ad S.C. Anco, Symmetry and Integration Methods for Dif- ferential Equations, Springer-Verlag, New York (2002).
  • 3G.W. Bluman, G.J. Reid, and S. Kumei, J. Math. Phys. 29 (1988) 806.
  • 4G.A. Guthrie, J. Phys. A 26 (1993) L905.
  • 5P-J- Olver, J. Sanders, and J.P'. Wang, J. Nonlinear Math. Phys. 20 (2002) 164.
  • 6S.Y. Lou and X.R. Hu, J. Phys. A: Math. Gen. 30 (1997) L95.
  • 7X.R. Hu, S.Y. Lou, and Y. Chen, Phys. Rev. E 85 (2012) 056607.
  • 8X.P. Chen, S.Y. Lou, C.L. Chen, and X.Y. Tang, Phys. Rev. E 89 (2014) 043202.
  • 9J.C. Chen, X.P. Xin, and Y. Chen, J. Math. Phys. 55 (2014) 053508.
  • 10S.Y. Lou, X.R. Hu, and Y. Chen, J. Phys. A: Math. Theor. 45 (2012) 155209.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部