Quasi-Conical Quantum Dot: Electron States and Quantum Transitions
Quasi-Conical Quantum Dot: Electron States and Quantum Transitions
摘要
The exactly solvable model of quasi-conical quantum dot, having a form of spherical sector, is proposed. Due to the specific symmetry of the problem the separation of variables in spherical coordinates is possible in the one- electron Sehrodinger equation. Analytical expressions for wave function and energy spectrum are obtained. It is shown that at small values of the stretch angle of spherical sector the problem is reduced to the conical QD problem. The comparison with previously performed works shows good agreement of results. As an application of the obtained results, the quantum transitions in the system are considered.
参考文献32
-
1Z.I. Alferov, Semiconductors 32 (1998) 1.
-
2D.D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum Dot Heterostruetures Wiley, Chichester (1999).
-
3AI.L. Efros and A.L. Efros, Semiconductors 16 (1982) 772.
-
4J.L. Zhu, Phys. Rev. B 39 (1989) 87808783.
-
5D.S. Chuu, C.M. Hsiao, and W.N. Mei, Phys. Rev. B 46 (1992) 3898.
-
6H.A. Sarkisyan, Mod. Phys. Lett. B 16 (2002) 835.
-
7M. Tadic and F.M. Peeters, Physica E 12 (2003) 880.
-
8M. Willatzen and L.C. Lew Yan Voon, Physica E 16 (2003) 286.
-
9D.B. Hayrapetyan, E.M. Kazaryan, and H.Kh. Tevosyan, Physica E 46 (2012) 274278.
-
10D.B. Hayrapetyan, A.Sh. Achoyan, E.M. Kazavyan, and H.Kh. Tevosyan, Journal of Contemporary Physics (Ar- menian Academy of Sciences) 48 (2013) 285.
-
1谭伟伟,张浩,王开,张雨婷,梁超,李志明.一道竞赛题的多种解法[J].高等数学研究,2016,19(2):56-57. 被引量:1
-
2方壮.运用对称性简化球面坐标三重积分计算[J].黄山学院学报,2007,9(5):10-12.
-
3李德新.利用球面坐标解一类条件极值问题[J].高等数学研究,2006,9(2):6-7. 被引量:1
-
4梁景辉.速度和加速度在球坐标系中分量式的一种推导方法[J].大学物理,1993,12(9):47-48.
-
5石仁淑,何延治.球面坐标下计算三重积分的一种具体方法[J].林区教学,2011(8):107-108.
-
6高建华,马文采.关于均匀带电球面电场分布的讨论[J].山东科学,1996,9(1):29-31. 被引量:1
-
7张春跃.利用球面坐标及柱面坐标计算曲面积分[J].大学数学,2003,19(4):98-100. 被引量:9
-
8曹刚,李海欧,涂涛,周诚,郝晓杰,郭光灿,郭国平.Electron States in Parallel Double Quantum Dots with a Tunable Inter-Dot Coupling[J].Chinese Physics Letters,2009,26(9):231-234. 被引量:1
-
9段汕.平面及空间区域的描述方法[J].中南民族大学学报(自然科学版),2000,19(S1):14-16.
-
10孙梦佳.一道全国大学生数学竞赛试题的四种解法[J].高等数学研究,2014,17(2):48-50. 被引量:1