期刊文献+

基于高层语义词袋的人体行为识别方法

Human Activity Recognition Based on High-level Semantic Codebook
下载PDF
导出
摘要 人体行为分析为视频监控系统、视频检索系统提供重要的研究基础。本文提出了一种基于高层语义词袋模型的人体行为识别方法。该方法根据底层词袋中词汇的相关关系,构造出一个基于词汇交互信息量的底层词汇图;然后使用层次聚类的方法对该图进行分割,得到底层词汇组模型,最后将该模型表示为高层语义词袋模型。实验结果表明,该方法可以高效地识别视频中的人体行为。 Human activity recognition is the important basis of video surveillance system. In this paper, a new activity recognition method is proposed based on the high-level codebook. We construct a code-word graph based on the mutual information of lowlevel code-words, and then partition the graph into different groups, which discover the high-level code-words patterns. Experimental result shows that the proposed method can effective recognize human activities.
作者 黄少年 施游
出处 《电脑与电信》 2015年第3期37-39,共3页 Computer & Telecommunication
基金 湖南省教育厅资助科研项目 项目编号:No.13C474
关键词 行为识别 语义词袋 视频监控 activity recognition semantic codebook video surveillance
  • 相关文献

参考文献6

二级参考文献90

  • 1Xang T, Gong S G. Video behavior profiling for anom- aly detection [ J ]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2008, 30 ( 5 ) : 893 - 908.
  • 2Bobick A, Davis J. Real-time recognition of activity using temporal templates [ C ]//Proceedings of IEEE Workshop on Applications of Computer Vision. Saraso- ta, FL, USA, 1996:39-42.
  • 3Davis J, Bobick A. The representation and recognition of action using temporal templates, technical report 402 [ R ]. Cambridge, MA, USA: Perceptual Computing Group, MIT Media Lab, 2007.
  • 4Bregler C. Learning and recognizing human dynamics in video sequences [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Puerto Ri- co, USA, 1997:568-574.
  • 5Man J F, Yang L M, Wan L J, et al. Research on on- line monitoring and analyzing of interactive behavior of distributed software [ J]. Journal of Software, 2010, 5 (4) : 361 -368.
  • 6Teh Y W, Jordan M I, Beal M J. Hierarchical Dirichlet processes [J]. Journal of the American Statistical Asso- ciation, 2006,101(476) : 1566 - 1581.
  • 7Jurgen V G, Saatci Y, Teh Y W. Beam sampling for the infinite hidden Markov model [ C ]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland, 2008 : 102 - 109.
  • 8Laptev I,Lindeberg T.On space-time interest points [J].International Journal of Computer Vision,2005,64(2/3):107-123.
  • 9Ahad M A R.Motion history image [M]//Motion History Images for Action Recognition and Understanding.London:Springer,2013:31-76.
  • 10Wang H,Klaser A,Schmid C,et al.Action recognition by dense trajectories[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2011:3169-3176.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部