摘要
证明一个Deng度量是一个Erceg度量,但反之不成立,并且证明Deng度量的拓扑可以被远域刻画且它所诱导的拓扑和m-一致结构就是Erceg度量所诱导的拓扑和Hutton一致结构。
In this paper, we point out that Deng's pseudo-metric is Erceg's pseudo-metric, but the converse is not true, prove that the topology induced by Deng' s pseudo-metric can characterized by Q-neighborhoods, therefore its topology is Q-C1, and what is more, show that Deng's topology and it's m-uniformity are respectively Erceg's topology and Hutton's uniformity.
出处
《模糊系统与数学》
CSCD
北大核心
2015年第1期1-5,共5页
Fuzzy Systems and Mathematics
基金
河南科技大学博士启动项目(09001613)
河南科技大学科研创新能力培育基金资助项目(13000810)