期刊文献+

基于结构元最小二乘序的模糊线性回归 被引量:8

Least-squares Order in Fuzzy Linear Regression Analysis Based on Structured Element
原文传递
导出
摘要 在具有模糊观测数据的线性回归问题中,通过定义模糊序指标实现模糊数的排序,借助经典最小二乘法原理,给出了使平方误差和在此排序方法下达到最小的模糊回归系数最小二乘序估计方法。三个例子的结果表明,文中的最小二乘方法能很好的对输入和输出为模糊数,回归系数为精确值的回归模型进行估计,更重要的是,此方法不仅对三角模糊数适用,对其他类型的模糊观测数据也适用。 In linear regression model with the fuzzy observations, ranking fuzzy number is proposed based on the defination of fuzzy order index. In this paper an idea stemmed from the classical least squares approach, the least squares order estimate is proposed for the fuzzy regression parameters, which the fuzzy sum of squared errors can be minimized under the method for ranking fuzzy numbers. The results of three cases show that the least-squares method of this paper is able to estimate well to the fuzzy regression model for fuzzy input-output data and the crisp regression coefficients. Most important, it works for all types of fuzzy obsevations, not restricted to the triangular one.
作者 任燕 郭嗣琮
出处 《模糊系统与数学》 CSCD 北大核心 2015年第1期126-133,共8页 Fuzzy Systems and Mathematics
基金 教育部高校博士学科点专项科研基金资助项目(20102121110002)
关键词 模糊回归 模糊结构元 模糊序指标 模糊最小二乘序 Fuzzy Regression Fuzzy Structured Element Fuzzy Order Index Fuzzy Least-squares Order
  • 相关文献

参考文献10

  • 1Tanaka H, Hayashi I, Watada J. Possibilistic linear regression analysis for fuzzy data [J]. European Joural of Operational Rearch, 1989,40 : 389- 396.
  • 2Redden D T, Woodall W H. Properties of certain fuzzy linear regression methods[J]. Fuzzy Sets and Systems,1994, 64:361-375.
  • 3Diamond P. Least squares fitting of seveal fuzzy variables [Z]. Tokyo: Second International Congress of the International Fuzzy System Association, 1987.
  • 4郭嗣琮.模糊分析中的结构元方法(Ⅰ)[J].辽宁工程技术大学学报(自然科学版),2002,21(5):670-673. 被引量:111
  • 5郭嗣琮.基于模糊结构元理论的模糊分析数学原理[M].沈阳:东北大学出版社,2004.
  • 6Kim B, Bishu R R. Evaluation of fuzzy linear regression models by comparison membership function[J']. Fuzzy Sets Systems, 1998,100 .. 343- 352.
  • 7Sakawa M, Yano H. Multiobjective fuzzy linear regression analysis for fuzzy input-output data[J]. Fuzzy Sets and Systems, 1992,47 - 173- 181.
  • 8Kao C, Chyu C L. Least-squaes estimates in fuzzy regression analysis[J]. European Joural of Operational Rearch,2003,148.. 426-435.
  • 9Lu J L, Wang R L. An enhanced fuzzy linear regression model with more flexible spreads[J]. Fuzzy Sets and Systems, 2009,160 .. 2505 - 2523.
  • 10徐飞.基于非对称指数型模糊数的模糊回归在害虫预报上的应用(Ⅰ)[J].数学的实践与认识,2011,41(23):98-102. 被引量:2

二级参考文献9

共引文献121

同被引文献62

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部