摘要
引入了序半群中(上,下)粗糙理想的概念,讨论了序半群中理想与(上,下)粗糙理想的关系,证明了对含最小元的序半群,若任一元素的等价类是有限的,则下粗糙理想之集关于包含序构成一个代数格。最后,讨论了(半,准)素理想与(上,下)粗糙(半,准)素理想的关系。
In this paper, the notions of (upper, lower) rough ideals of an ordered semigroup are proposed, the relationship between ideals and (upper, lower) rough ideals of an ordered semigroup is discussed, and it is proved that if θ is an equivalence relation on anordered semigroup S with the bottom element and S satisfies |[-x]θ [ 〈 +∞ for every x ∈ S, then (θ-Id (S), ) is analgebraic lattice. Finally, the relationship between prime (semi-prime, primary prime) ideals and (upper, lower) rough prime (semi-prime, primary prime) idealsis discussed.
出处
《模糊系统与数学》
CSCD
北大核心
2015年第1期146-152,共7页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11171196)
关键词
序半群
粗糙理想
粗糙素理想
Ordered Semigroup
Rough Ideal
Rough Prime Ideal