期刊文献+

序半群中的粗糙理想

Rough Ideals in Ordered Semigroups
原文传递
导出
摘要 引入了序半群中(上,下)粗糙理想的概念,讨论了序半群中理想与(上,下)粗糙理想的关系,证明了对含最小元的序半群,若任一元素的等价类是有限的,则下粗糙理想之集关于包含序构成一个代数格。最后,讨论了(半,准)素理想与(上,下)粗糙(半,准)素理想的关系。 In this paper, the notions of (upper, lower) rough ideals of an ordered semigroup are proposed, the relationship between ideals and (upper, lower) rough ideals of an ordered semigroup is discussed, and it is proved that if θ is an equivalence relation on anordered semigroup S with the bottom element and S satisfies |[-x]θ [ 〈 +∞ for every x ∈ S, then (θ-Id (S), ) is analgebraic lattice. Finally, the relationship between prime (semi-prime, primary prime) ideals and (upper, lower) rough prime (semi-prime, primary prime) idealsis discussed.
作者 刘颖 赵彬
出处 《模糊系统与数学》 CSCD 北大核心 2015年第1期146-152,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(11171196)
关键词 序半群 粗糙理想 粗糙素理想 Ordered Semigroup Rough Ideal Rough Prime Ideal
  • 相关文献

参考文献15

  • 1Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11:341- 356.
  • 2Iwinski T B. Algebraic approach to rough sets[J]. Bulletin of the Polish Academy of Sciences. Mathematics, 1987, 35 .. 673-683.
  • 3Bonikowaski Z. Algebraic structures of rough sets [C] // Ziarko W P. Rough sets, fuzzy sets and knowledge discovery. Berlin :Springer-Verlag1995 : 242- 247.
  • 4Pomykala J, Pomykala j A. The stone algebra of rough sets [M]. Bulletin of the Polish Academy of Sciences. Mathematics, 1998,36 : 495 - 508.
  • 5Yao Y Y, Lingras P J. Interpretations of belief function in the theory of rough sets I-J]. Information Sciences, 1998, 104:81-106.
  • 6Kuroki N. Rough ideals in semigroups[J]. Information Sciences, 1997,100 : 139- 163.
  • 7Estaji A A, Hooshmandasl M R, Davvaz B. Rough set theory applied to lattice theory[J]. Information Sciences, 2012,200:108-122.
  • 8Xiao Q M, Li Q G. Generalized lower and upper approximations in quantales[J]. Journal of Applied Mathematics, 2012,2012:1-11.
  • 9Xiao Q M, Zhang Z L. Rough prime ideals and rough fuzzy prime ideals in semigroups[J]. Information Sciences, 2006,176(6) : 725- 733.
  • 10Yang L Y, Xu L S. Roughness in quantales[J]. Information Sciences,2013,220:568-579.

二级参考文献10

  • 1张玉芬,张筱玮.拟正则半群的最小群同余[J].山东师范大学学报(自然科学版),1996,11(2):1-2. 被引量:1
  • 2Satyanarayana M,Bowling Green.Commutative primary semigroups[J] .Czechoslovak Math J,1972,22(97):509~516.
  • 3Kehayopulu N.On intra-regular ordered semigroups[J].Semigroup Forum,1993,(46):271~278.
  • 4Clifford A H,Preston G B.The Algebra Theory of Semigroups Vol. I [M].Rhode Island:Providence,1961.1 ~46.
  • 5Xie Xiang-Yun. On Regular, Strongly Regular Congruences on Ordered Semigroups[J] 2000,SemiGroup Forum(2):159~178
  • 6Niovi Kehayopulu,Michael Tsingelis. On subdirectly irreducible ordered semigroups[J] 1995,Semigroup Forum(1):161~177
  • 7Niovi Kehayopulu,Michael Tsingelis. Pseudoorder in ordered semigroups[J] 1995,Semigroup Forum(1):389~392
  • 8曹永林,许新斋.半群上的最小半格同余[J].山东师范大学学报(自然科学版),1997,12(4):370-372. 被引量:1
  • 9谢祥云.Regular Congruence Classes of Ordered Semigroups[J].Journal of Mathematical Research and Exposition,2001,21(2):207-211. 被引量:2
  • 10许新斋.序半群中N-类左单性的刻划[J].山东师范大学学报(自然科学版),2001,16(2):121-124. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部