期刊文献+

生物组织光声成像技术综述 被引量:7

Photoacoustic Imaging:A Powerful Tool for Capturing Chemical Information in Tissue
下载PDF
导出
摘要 光声成像是一种低功率、非电离的成像方式,既具有声学方法对深层组织成像分辨率高的优点,又具有光学方法在功能成像、分子成像方面具有高对比度的优势。本文回顾了近年来,光声成像技术在生物医学领域的研究进展,介绍了光声成像的基本成像原理。以此为基础,本文介绍了光声成像的两种主要成像方案:光声断层成像和光声显微镜,并且讨论了光声成像在获取生物组织化学成分信息和微结构信息方面的优越性;最后,本文对光声成像技术的优点和应用前景进行了总结。 Photoacoustic imaging(PAI)is a state of art biomedicine imaging technique in the 21 st century,for it inherits the high resolution of ultrasonography in deep tissue and the ability of optical imaging in biochemical information detection simultaneously.The recent progresses of PAI in biomedicine are reviewed.The basic principles and two major implementations of PAI,photoacoustic tomography and photoacoustic microscopy are introduced.Then the capability of multi-wavelength PAI in evaluating chemical components in tissues,and the feasibility of PA spectral analyses in evaluating histological microstructures in biological tissue are demonstrated,at the same time,several analysis methods and clinical applications of PAI in biomedical imaging are discussed.Finally,the advantages and potential applications of PAI in biology and medicine are sunmarized.
出处 《数据采集与处理》 CSCD 北大核心 2015年第2期289-298,共10页 Journal of Data Acquisition and Processing
基金 国家重点基础研究发展计划("九七三"计划)(2012CB921504)资助项目 国家自然科学基金(11422439 11274171 11274167)资助项目 教育部博士点基金(20120091110001)资助项目
关键词 光声成像 光声断层 光声显微镜 化学成分 微结构 photoacoustic imaging tomography microscopy chemical composition microstructure
  • 相关文献

参考文献49

  • 1Gortzak-U L, Jimenez W, Nofeeh-Mozes S, et al. Sentinel lymph node biopsy vs pelvic lymphadenectomy in early stage cervi- cal cancer: Is it time to change the gold standard[J]. Gynecol Oncol, 2010, 116(1) :28-32.
  • 2Joy D, Thava V R, Scott B B. Diagnosis of fatty liver disease: Is biopsy necessary[J]. Eur J Gastroen Hepat, 2003, 15(5) : 539-543.
  • 3Sorokin P P, Glownia J H. Nonlinear spectroscopy in astronomy: Assignment of diffuse interstellar absorption bands to L (α)-induced, two-photon absorption by H 2 molecules[J]. Chem Phys Lett, 1995, 234(1-3): 1-6.
  • 4Smith G D, Clark R J H. Raman microscopy in archaeological science[J]. J Archaeol Sci, 2004, 31(8) : 1137-1160.
  • 5Ryczkowski J. IR spectroscopy in catalysis[J]. Catal Today, 2001, 68(4) : 263-381.
  • 6Podoleanu A G. Optical coherence tomography[J]. J Microsc-Oxford, 2012, 247(3): 209-219.
  • 7Rezakhaniha R, Agianniotis A, Schrauwen J T C, et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy[J]. Biomech Model Mechan, 2012, 11(3/4): 461-473.
  • 8Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nat Methods, 2005, 2(12): 932-940.
  • 9Wang L V, Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.
  • 10Wang Xueding, Pang Yongjiang, Ku Geng, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nat Bio Technol, 2003, 21(7) : 803-806.

二级参考文献15

  • 1Konofagou E, Ophir J. Myocardial elastography--A feasibility study[J]. Ultrasound in Medicine and Bi- ology, 2002,28(4) :1113- 1124.
  • 2Alam S K, Ophir J, Konofagou E E. An adaptive strain estimator for elastography [J]. IEEE Trans Ultrason Ferroel Freq Cont, 1998,45(2):461-472.
  • 3Techavipoo U, Varghese T. Wavelet de-noising of displacement estimates in elastography[J]. Ultrason Med Biol, 2004,30(4) :477-491.
  • 4Lindop J E, Treece G M, Gee A H, et al. Estima- tion of displacement location for enhanced strain ima- ging[J]. IEEE Trans Ultrason Ferroel Freq Cont, 2007,54(9) :1751-1771.
  • 5Dantas R G, Costa E T. Ultrasound speckle reduc- tion using modified Gahor fillters[J]. IEEE Trans Ultrason Ferroel Freq Cont, 2007,54 (3) : 530-538.
  • 6Liu P, Liu D C. Oriented demodulation and frequen cy splitting for directive filtering based compounding [C]//2008 IEEE Ultrasonics Symposium. Beijing: [s. n. ], 2008.
  • 7Liu P, Liu D C. Directive filtering schemes for fre quency compounding in ultrasound speckle reduction [C]//Proceedings of 2008 International Pre-olympic Congress on Computer Science. Nanjing: [s. n. ], 2008: 227-231.
  • 8Tanter M, Bercoff J, Sandrin L, et al. Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography [J]. IEEE Trans Ultrason Ferroel Freq Cont, 2002, 49 (3) : 1363-1374.
  • 9Techavipoo U, Chen Q, Varghese T, et al. Noise reduction using spatial-angular compounding for elas- tography[J].IEEE Trans Ultrason Ferroel Freq Cont, 2004,51(5) :510-520.
  • 10Chen Q, Gerig A L, Techavipoo U, et al. Correla tion of RF signals during angular compounding[J]. IEEE Trans Ultrason Ferroel Freq Cont, 2005, 52 (6) :961-970.

共引文献2

同被引文献32

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部