期刊文献+

基于短文本信息流的热点话题检测 被引量:4

Hot Topic Detection Based on Short Text Information Flow
下载PDF
导出
摘要 短文本信息流在传递公开信息时携带了丰富且具有极大价值的信息资源。根据短文本信息流特点,利用训练数据集中的信息熵来构建决策树检测模型进行热点话题检测,该方法先是计算出各话题类别的平均信息量和每个特征词对于短文本信息流进行划分的信息增益率,再通过选择具有最大信息增益率的特征词进行测试,完成自上而下的决策树建树过程,最后利用叶子结点的类型确定热点话题。在真实短信文本信息流上实验表明,该方法具有明显的检测稳定性和较高的数据处理效率。 Potential information with high value are carried by short text information flow in transmission.A model of decision tree for hot topic is established with the information entropy of training data set,according to the characteristics of short text information flow.The average amount of information of each topic categories and the information gain ratio of each characteristic word for distinguishing short text information flow are computed in the first step by the above algorithm of decision tree.Then,the characteristic word with maximum information gain ratio is selected for the job of test,while the top-down construction process of the decision tree is accomplished.Finally,the hot topic is determined according to the leaf node type.The experiment result on real short text information flow shows that the proposed algorithm is more stable and faster than others.
作者 宗慧 刘金岭
出处 《数据采集与处理》 CSCD 北大核心 2015年第2期464-468,共5页 Journal of Data Acquisition and Processing
基金 国家级星火计划"农村民生建设信息反馈平台建设"(2011GA690190)资助项目
关键词 短文本 信息流 热点话题 决策树 short text information flow hot topic decision tree
  • 相关文献

参考文献13

  • 1刘金岭,倪晓红,王新功.手机短信文本信息流的自动文摘生成[J].现代图书情报技术,2013(2):43-49. 被引量:4
  • 2张振亚,陈恩红,王进,王煦法.RealCC在文本信息检索的个性化推荐中的应用研究[J].数据采集与处理,2004,19(3):338-342. 被引量:3
  • 3Shen X, Tan B, Zhai C. Implicit user modeling for personalized search[C]//Proceedings of the Conference on Information and Knowledge Management. Bremen, Germany [,s. n. ], 2005 : 824-831.
  • 4Ozmutlu S, Ozmutlu H C, Spink A. Automatic new topic identification in search engine transaction logs using multiple linear regres- sion[C]//Proceedings of the 41st Hawaii International Conference on System Sciences. Hawaii, USA [s. n. ], 2008 : 140-148.
  • 5Ozmutlu S, Ozmutlu H C,Buyuk B. Using Monte-Carlo simulation for automatic new topic identification of seach engine transaction logs[C]//Proceedings of the 2007 Winter Simulation Conference. Washington, USA : [s. n. ], 2007 : 2306-2314.
  • 6Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: A statistical signature-hased approach to IP traf- fic classification[C]//Proc of the ACM SIGCOMM Internet Measurement Conf. Taormina:[s. n. ], 2004:135-148.
  • 7Zuev D, Moore A W. Traffic classification using a statistical approach[C]//Proc of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005:321-324.
  • 8Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques[C]//Proc of the 2005 ACM SIGMET- RICS Int'l Conf on Measurement and Modeling of Computer Systems. Banff:[s. n. ], 2005:50-60.
  • 9刘金岭.基于语义的高质量中文短信文本聚类算法[J].计算机工程,2009,35(10):201-202. 被引量:30
  • 10史岳鹏,朱颢东.基于类别相关性和优化的ID3特征选择[J].数据采集与处理,2011,26(2):230-234. 被引量:3

二级参考文献54

共引文献55

同被引文献40

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部