期刊文献+

静磁场对熔融液滴振荡变形影响的相场模拟 被引量:1

Phase Field Modeling on Effects of Static Magnetic Field on Oscillatory Deformation of Molten Droplet
下载PDF
导出
摘要 为了解静磁场作用下熔融液滴振荡过程的特征,采用相场法数值模拟了硅熔体液滴的界面变形和内部对流过程,分析了轴向静磁场对初始形状为二阶Legendre函数硅熔体液滴界面振荡和内部对流的影响.研究表明:施加静磁场以后,液滴收缩较快,说明静磁场抑制了液滴内部流动;随着磁场强度从0增加至0.9 T,流函数最大值从0.57减小到0.08,液滴的界面振荡和内部对流逐渐减弱,液滴的长短轴比更快趋近于1,但磁场对液滴的振荡周期没有明显影响,显示相场法能够模拟密度较大的熔融液滴的界面振荡和内部对流过程. In order to study the characteristics of oscillatory process of a molten silicon droplet under static magnetic field,the phase field method was adopted to numerically simulate the interface oscillation and internal fluid convection of a molten silicon droplet. The influence of an axial static magnetic field on the internal convection and interface oscillation of a molten silicon droplet with an initial shape of the second-order Legendre function was analyzed. The numerical result exhibits that the shrink of the droplet under static magnetic field is faster than that without magnetic field. The static magnetic field suppresses the fluid convection inside the droplet. As the imposed magnetic field intensity increases from 0 to 0. 9 T,the maximum values of stream function reduce from 0. 57 to 0. 08,and the internal convection and interface oscillation are weakened gradually. Under magnetic field,the ratio of long-axis to short-axis of droplet quickly tends to 1. However,the magnetic field has almost no influence on oscillation frequency of droplet. The investigation indicates that the phase-field modeling can effectively simulate the interface oscillation and internal convection of the molten droplet even with high density.
出处 《西南交通大学学报》 EI CSCD 北大核心 2015年第2期382-387,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(51176210) 重庆市自然科学基金资助项目(cstc2012jj A50003) 中央高校基本科研业务费专项资金资助项目(CDJZR12138801)
关键词 相场模拟 静磁场 液滴 硅熔体 phase field model static magnetic field droplet molten silicon
  • 相关文献

参考文献17

  • 1YASUD H, OHNAKA I, NINOMIYA Y, et al. Levitation of metallic melt by using the simultaneous imposition of the alternating and the static magnetic fields[ J ]. Journal of Crystal Growth, 2004, 260 ( 3/ 4) : 475-485.
  • 2KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field[J]. Journal of Applied Physics, 2008, 104(5): 054901-1-8.
  • 3KOBATAKE H, FUKUYAMA H, MINATO I, et al. Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field [J]. Applied Physics Letters, 2007, 90(9) : 094102-1-3.
  • 4FUKUYAMA H, TAKAHASHI K, SAKASHITA S, et al. Noncontact modulated laser calorimetry for liquid austenitic stainless steel in de magnetic field[J]. ISIJ International, 2009, 49(9) : 1436-1442.
  • 5BOJAREVICS V, PERICLEOUS K. Modelling electromagnetically levitated liquid droplet oscillations[ J ]. ISIJ International, 2003, 43 (6) : 890-898.
  • 6TSUKADA T, SUGIOKA K I, TSUTSUMINO T, et al. Effect of static magnetic field on a thermal conductivity measurement of a molten droplet using an electromagnetic levitation technique[ J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22) : 5152-5157.
  • 7BADALASSI V E, CENICEROS H D. Computation of muhiphase systems with phase field models [ J ]. Journal of Computational Physics, 2003, 190(2): 371-397.
  • 8YUE P T, FENG J J, LIU C, SHEN J. A diffuse- interface method for simulating two-phase flows of complex fluids [ J ]. Journal of Fluid Mechanics, 2004, 515 : 293-317.
  • 9KIM J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005, 204(2): 784-804.
  • 10DING Hang, PETER D S, SHU Chang. Diffuse interface model for incompressible two-phase flows with large density ratios [J]. Journal of Computational Physics, 2007, 226 (2) : 2078-2095.

二级参考文献14

  • 1范建峰,袁章福,柯家骏.高温熔体表面张力测量方法的进展[J].化学通报,2004,67(11):802-807. 被引量:23
  • 2ASAKUMA Y, HIRATA T, TSUKADA T, et al. Nonlinear oscillations of molten silicon drops in electromagnetic levitator[J]. J. Chemical Engineering of Japan, 2000, 33(6): 861-868.
  • 3BOJAREVICS V, PERICLEOUS K. Modelling electromagnetically levitated liquid droplet oscillation[ J ]. ISIJ International, 2003, 43 : 890-898.
  • 4WATANABE T. Nonlinear oscillations and rotations of a liquid droplet[J]. International J. Geology, 2010, 4(1) : 5-13.
  • 5JACQMIN D. Calculation of two-phase Navier-Stokes using phase-field modelling[ J]. J. Computational Physics, 1999, 155(1):96-127.
  • 6DING H, SPELT P D M, SHU C. Diffuse interface model for incompressible two-phase flows with large density ratios[ J]. J. Computational Physics, 2007, 226 (2) : 2078-2095.
  • 7TAKADA N, MATSUMOTO J, Matsumoto S, et al. Application of a phase-field method to the numerical analysis of motions of a two-phase fluid with high density ratio on a solid surface[J]. J. Computational Science and Technology, 2008, 2(2) : 318-329.
  • 8EYRE D J. An unconditionally stable one-step scheme for gradient systems [ R ]. Salt Lake: Department of Mathematics University of Utah, 1998.
  • 9BADALASSV E I, CENICEROS H D, BANERJEE S. Computation of multiphase systems with phase field models[J]. J. Computational Physics, 2003, 190: 371-397.
  • 10ASCHER U M, RUUTH S J, WETI'ON B T R. Implicit-explicit methods for time dependent partial differential equations [ J ]. SIAM Journal on Numerical Analysis, 1995, 32(3): 797-823.

共引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部