摘要
应用显式积分与隐式积分两种求解方法计算橡胶元件的垂向静刚度,其中显式积分采用斜坡、正弦、光滑三种加载函数进行位移加载。通过对比分析计算结果与试验数据发现,其中斜坡加载的动能在计算初始时出现振荡,而光滑加载与正弦加载的动能整个过程均并没有出现振荡;在大变形时,隐式积分求解方法由于出现网格畸变从而导致程序收敛失败,此时显式积分求解体现出优势,并且三种加载函数的计算结果几乎无差别,并且与试验数据吻合度比较好,最大误差为5.7%。对于橡胶元件大变形问题,应用显式积分求解静刚度的方法是可行的,并且不同的加载函数会直接影响计算结果,尤其是在初始计算阶段的结果的准确性有很大的影响。
The vertical static stiffness of rubber element is solved by the explicit integration and implicit integration,and three loading functions including ramp, sinusoidal and smooth function, are chosen in explicit integration. It is indicated by simulation analysis and experimental results that the kinetic energy of ramp function exists the oscillation, while the kinetic energy of smooth and sine function exists the no oscillation during the initial step time. In the large-strain, implicit integration is failing because of mesh distortion, then the explicit integration is high-efficiency and the simulation results are consistent with experimental results, the maximum error is 5.7 %. It is efficient that the explicit integration is used for solving the large- strain stiffness of rubber element and the different loading functions affect the simulation results directly, especially during the initial step time.
出处
《噪声与振动控制》
CSCD
2015年第2期209-212,共4页
Noise and Vibration Control
关键词
振动与波
橡胶元件
大变形
静刚度
显式积分
加载函数
vibration and wave
rubber element
large strain
static stiffness
explicit integration
loading function