期刊文献+

显式积分求解橡胶元件刚度的方法研究

Study on Explicit Integration Used for Solving the Stiffness of Rubber Element
下载PDF
导出
摘要 应用显式积分与隐式积分两种求解方法计算橡胶元件的垂向静刚度,其中显式积分采用斜坡、正弦、光滑三种加载函数进行位移加载。通过对比分析计算结果与试验数据发现,其中斜坡加载的动能在计算初始时出现振荡,而光滑加载与正弦加载的动能整个过程均并没有出现振荡;在大变形时,隐式积分求解方法由于出现网格畸变从而导致程序收敛失败,此时显式积分求解体现出优势,并且三种加载函数的计算结果几乎无差别,并且与试验数据吻合度比较好,最大误差为5.7%。对于橡胶元件大变形问题,应用显式积分求解静刚度的方法是可行的,并且不同的加载函数会直接影响计算结果,尤其是在初始计算阶段的结果的准确性有很大的影响。 The vertical static stiffness of rubber element is solved by the explicit integration and implicit integration,and three loading functions including ramp, sinusoidal and smooth function, are chosen in explicit integration. It is indicated by simulation analysis and experimental results that the kinetic energy of ramp function exists the oscillation, while the kinetic energy of smooth and sine function exists the no oscillation during the initial step time. In the large-strain, implicit integration is failing because of mesh distortion, then the explicit integration is high-efficiency and the simulation results are consistent with experimental results, the maximum error is 5.7 %. It is efficient that the explicit integration is used for solving the large- strain stiffness of rubber element and the different loading functions affect the simulation results directly, especially during the initial step time.
出处 《噪声与振动控制》 CSCD 2015年第2期209-212,共4页 Noise and Vibration Control
关键词 振动与波 橡胶元件 大变形 静刚度 显式积分 加载函数 vibration and wave rubber element large strain static stiffness explicit integration loading function
  • 相关文献

参考文献6

二级参考文献24

  • 1田杰,胡时胜.准静态压缩应力-应变曲线测量方法的探索[J].实验力学,2005,20(2):265-269. 被引量:10
  • 2刘才.弹塑性有限元方法对轧制过程的模拟[J].东北重型机械学院学报,1987,11(3):66-73.
  • 3[1]Zienkiewicz C. The Finite Element Method[M]. 3rd ed, New York, McGraw-Hill, 1977,569-606.
  • 4[2]Honecker A and Mattiasson K. Finite element procedures for 3-Dsheet forming simulation [J]. Nuniform, 1989,89: 457-463.
  • 5[3]Mattiasson K. Evaluation of a dynamic approach using explicit integration in 3-D sheet forming simulation[J]. Numiform, 1992,92: 55-67.
  • 6[4]Galbraith P C and Hallquist J O. Sheet element formulations in LS-DYNA3D: their use in modelling sheet metal forming [J]. Journal of Materials Processing Technology, 1995,50:158-167.
  • 7[5]Karafillis A P and Boyce M C. Tooling and binder design for sheet metal formaing processes compensating springback error [J]. International Journal of Machine Tool and Manufacture, 1996,36:503-526.
  • 8[6]Souza E A. A model for elastoplastic damage at finite strain: algorithmic issues and applications[J]. Engineering Computations, 1994,11: 257-281.
  • 9薛守义编著.有限单元法[M].北京:中国建材工业出版社,2006.
  • 10李尚健,金属塑性成形过程模拟,1999年

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部