期刊文献+

微生物遗传多样性的挖掘和代谢工程应用 被引量:1

Exploration of the genetic diversity of microbial strains for metabolic engineering
下载PDF
导出
摘要 随着近年来系统生物学研究的深入,微生物的基因组、转录组、蛋白组及代谢组等不同层次的组学信息不断增加。我国具有丰富的微生物多样性,但目前对多样性的研究大多集中在物种多样性及生态多样性方面,对微生物菌株水平遗传多样性的研究还刚刚起步。以酿酒酵母和链霉菌为例,结合本课题组的成果,总结了近年来利用其基因组序列及转录组蛋白质等功能基因组信息,开发利用其遗传多样性的研究进展。在工业酿酒酵母中发现了多个独特的功能基因,包括絮凝基因及与环境胁迫耐性相关的调节蛋白基因,还发现了独特的启动子序列。此外,在海洋放线菌基因组中也发现了独特的调节基因。对微生物遗传多样性的挖掘利用,不仅有助于深入理解微生物不同菌株中独特的调节方式,也为微生物的代谢工程改造提供了大量新的可利用的遗传组件。 With the in-depth studies of systems bology,multi-omics( genomics,transcriptomics,proteomics andmetabolomics) data is increasingly emerging. It has been well studied and accepted that there is a vast diversity of microorganisms in China,however,so far most studies focus on the species diversity and its ecological implication,there is still few studies focusing on the genetic diversity of microorganisms. In this review,brewing yeast strains of Saccharomyces cerevisiae and streptomycetes were used as examples,and research progress in the exploration of the genetic diversity of genes responsible for yeast flocculation and stress tolerance,as well as special promoter sequence in industrial yeast strains was summarized. In addition,the effect of regulatory protein identified from marine actinobacteria on heterologous antibiotic production was also presented. Exploration and utilization of the genetic diversity of microorganisms provides basis for not only the understanding of specific regulatory mode in different strains of microorganisms,but also the metabolic engineering of microorganisms using diverse genetic elements.
出处 《微生物学杂志》 CAS CSCD 2015年第1期1-5,共5页 Journal of Microbiology
基金 国家高技术研究发展计划(863计划)项目(2012AA021205 2012AA101805) 教育部新世纪优秀人才支持计划项目(NCET-11-0057)
关键词 酿酒酵母 海洋放线菌 胁迫耐受性 遗传多样性 调节蛋白 Saccharomyces cerevisiae marine actinobacteria stress tolerance genetic diversity regulatory proteins
  • 相关文献

参考文献10

二级参考文献247

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2张吉娜,何秀萍,郭雪娜,刘楠,张博润.低双乙酰抗老化啤酒酵母工程菌的构建[J].生物工程学报,2005,21(6):942-946. 被引量:27
  • 3Eijsink VG, Gaseidnes S, Borchert TV, et al. Directed evolution of enzyme stability. Biomol Eng, 2005, 22: 21-30.
  • 4Frances HA, Patrick LW, Kentaro M, et al. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci, 2001, 26(2): 100-106.
  • 5Nicholas JT. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol, 2003, 21(11 ): 474-478.
  • 6Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 2006, 314(5805): 1565-1568.
  • 7Klein MD, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci USA, 2008, 105(7): 2319-2324.
  • 8Fujita K, Matsuyama A, Kobayashi Y, et al. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res, 2006, 6: 744-750.
  • 9Mohibullah N, Hahn S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Gens Dev, 2008, 22: 2994-3006.
  • 10Huisinga KL, Pugh BF. A Genome-wide Housekeeping Role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Molecular Cell, 2004, 13: 573-585.

共引文献81

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部