期刊文献+

矩阵填充及其在信号处理中的应用 被引量:11

Matrix Completion and Its Application in Signal Processing
下载PDF
导出
摘要 本文首先阐述了矩阵填充的应用背景,给出了矩阵填充的数学模型,详细分析了矩阵填充中的低秩特性和非相干特性,重点介绍了矩阵填充三种典型的重构算法:SVT(Singular Value Thresholding)算法、ADMiRA(Atomic Decomposition for Minimum Rank Approximation)算法和SVP(Singular Value Projection)算法,文中的仿真实验对这三种算法的重构性能进行了比较;文章随后分析了矩阵填充和压缩感知的联系;最后介绍了矩阵填充在协同过滤、系统识别、传感器网络、图像处理、稀疏信道估计、频谱感知以及多媒体编码和通信等方面的的应用。 This paper describes the background of matrix completion firstly,points out the mathematics model of matrix completion,analyzes the low rank property and the incoherence property in matrix completion.Malnly introduces three re-construction algorithm commonly used in matrix completion:SVT(Singular Value Thresholding)、ADMiRA(Atomic Decom-position for Minimum Rank Approximation)and SVP(Singular Value Projection),compares their reconstruction perform-ance in this paper.Secondly,we analyze the connection between matrix completion and compressed sensing.Finally we in-troduce the application of matrix completion in collaborative filtering,system identification,sensor network,image process-ing,sparse channel estimation,spectrum sensing and multimedia coding and communication.
出处 《信号处理》 CSCD 北大核心 2015年第4期423-436,共14页 Journal of Signal Processing
基金 国家自然科学基金(61271240) 江苏省自然科学基金重点项目资助(BK2010077) 江苏省基础研究计划(自然科学基金)(BK2011756) 江苏省高校自然科学研究资助项目(11KJB510018) 南京邮电大学科研基金项目(NY211009) 江苏第二师范学院"十二五"科研规划第二期课题(jsie2012yb03)
关键词 仿射秩最小 低秩特性 非相干特性 重构算法 affine rank minimization low-rank property incoherence property reconstruction algorithm
  • 相关文献

参考文献102

  • 1Candes E J, Tao T. Robust uncertain typrincipless : exact signal reconstruction from highly incomplete frequency in- formation[J]. IEEE Transaction on Information Theory, 2006, 52(2) :489-509.
  • 2Candes E J, Tao T. Near optimal signal recovery from random projections : universal encoding strategy? [ J ]. IEEE Transaction on Information Theory, 2006, 52(12) : 5406-5425.
  • 3Candes E J, Tao T. Decoding by linear programming [ J ]. IEEE Transaction on Information Theory., 2005, 51 (12) : 4203-4215.
  • 4Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2012, 58(2) : 1094-1121.
  • 5Gan H P, Li J, Li Z, et al. Bernoulli shift chaotic se- quence for compressed sensing [ J ]. Journal of Computa- tional Information Systems, 2014, 10(7) : 2761-2768.
  • 6Liu E, Temlyakov V. Orthogonal super greedy algorithm and applications in compressed sensing[ J]. IEEE Trans- action on Information Theory, 2012, 58(4) : 2040-2047.
  • 7Douoho D L. Compressed sensing[ J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 8Maleki A, Donoho D L. Optimally tuned iterative recon- strnction algorithms for compressed sensing [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2) : 330-341.
  • 9Duate M F, Sarvotham S, Baron D, et al. Distributedcompressed sensing of jointly sparse signals [ C ]//Cofer- ence Rocord-Asilomar Conference on Signals, Systems and Computers, 2005 : 1537-1541.
  • 10Candes E J, Recht B. Exact matrix completion via convex optimization[J]. Communications of the ACM. 2012, 55 (6) : 111-119.

二级参考文献30

  • 1Cands E J, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [J]. 1EEE Transactions on Informa- tion Theory, 2006, 52 (2) : 489-509.
  • 2Zhang C J, Liu J, Tian Q et al. Image classification by non- negative sparse coding, low-rank and sparse decomposi- tion [C]. In: International Conference on Computer Vision andPattern Recognition. Providence, USA, 2011.
  • 3Ji H, Huang S B, Shen Z W et al. Robust video restoration by joint sparse and low rank matrix approximation[J]. SlAM Journal on Imaging Sciences, 2011, 4(4): 1122- 1142.
  • 4Eckart C, Young G. The approximation of one matrix by another of lower rank[J]. Psychometrika, 1936, 1 (3) : 211- 218.
  • 5Jolliffe I T. Principal Component Analysis [M]. Springer- Verlag, New York, USA, 1986.
  • 6Wright J, Ganesh A, Rao Set al. Robust principal compo- nent analysis: Exact recovery of corrupted low-rank matri- ces via convex optimization[C]. In: Neural Information Processing Systems. Vancouver and Whistler, Canada, 2009.
  • 7Cand6s E J, Li X D, Ma Yet al. Robust principal compo- nent analysis? [J]. Journal of the ACM, 2011, 58 (3): 1-37.
  • 8Ganesh A, Wright J, Li X D et al. Dense error correction for low-rank matrices via principal component pursuit [C]. In: IEEE International Symposium on Information Theory. Austin, USA, 2010.
  • 9Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012, 58 (5) : 3047-3064.
  • 10Toh K C, Yun S W. An accelerated proximal gradient algo- rithm for nuclear norm regularized least squares prob- lems [J]. Pacific Journal of Optimization, 2010, 6 (3) : 615- 640.

共引文献82

同被引文献87

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部