期刊文献+

四阶累积量稀疏表示的DOA估计方法 被引量:3

DOA Estimation Method by Sparse Representation of Fourth-order Cumulants
下载PDF
导出
摘要 针对现有稀疏重构DOA估计算法不能抑制噪声项以及在高斯色噪声背景下不再适用的问题,本文提出了基于四阶累积量稀疏重构的DOA估计方法。首先,利用接收数据的四阶累积量构建了稀疏表示模型,该模型抑制了噪声项;其次对四阶累计量矩阵进行奇异值分解,化简了稀疏表示模型,通过奇异值分解,不仅减小了数据规模,而且进一步抑制了噪声。对于稀疏表示模型的求解,先利用信号子空间与噪声子空间的正交特性选取权值矢量,然后利用加权l1范数法对模型求解实现DOA估计。理论分析和仿真实验表明本文算法在高斯白噪声和色噪声背景下均适用;能够处理非相干和相干信号,且在低信噪比条件下,对相干信号有更高的估计精度;较之同类的稀疏重构算法,本文算法具有较低的算法复杂度和更高的角度分辨力。 The existing sparse reconstruction algorithms for DOA estimation algorithms couldn’t suppress noise and be applied in the background of colored Gaussian noise.In order to solve these problems,an approach for DOA estimation based on sparse reconstruction of fourth-order cumulant matrix was proposed in this paper.Firstly,we constructed sparse representation model using fourth-order cumulants of received data.Noise is suppressed in the model.Secondly,singular value decomposition was used upon forth-order cumulant matrix to simplify the sparse representation model.Through singu-lar value decomposition,we not only reduced the scale of data,but also further suppressed noise.Aiming at solving the model,we selected weight vector using orthogonality between signal subspace and noise subspace.Then we solved the mod-el by weighted 1 norm algorithm to achieve DOA estimation.Theoretical analysis and experimental results show that the al-gorithm proposed in this paper can be applied in the background of white Gaussian noise and colored Gaussian noise.The algorithm has the capability of processing both incoherent and coherent signals and achieves more accurate estimation for co-herent signal in the case of low SNR.Compared with the same kind of sparse reconstruction algorithms,the algorithm has lower calculation complexity and higher angle resolution.
机构地区 电子工程学院
出处 《信号处理》 CSCD 北大核心 2015年第3期314-318,共5页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61179036 61201379)
关键词 四阶累积量 稀疏重构 DOA估计 fourth-order cumulant sparse reconstruction DOA estimation
  • 相关文献

参考文献10

  • 1Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuits: Recursive function approximation with applications to wavelet decomposition [ C ]//27th Asilo- mar Conference on Signals, Systems and Computation, 1993, 1 : 40-44.
  • 2Cotter S F, Rao B D, Kjersti E, et al. Sparse solutions to linear inverse problems with multiple measurement vec- tors[ J ]. IEEE Transactions on Signal Processing, 2005, 53(7) : 2477-2488.
  • 3王晓庆,陶荣辉,甘露.基于贪婪算法的高分辨信号源DOA估计[J].信号处理,2012,28(5):705-710. 被引量:5
  • 4Chen S S, Donoho D L, Saunders M A. Atomic Decom-position by Basis Pursuit [ J]. SIAM Review, 2001, 43 (1) : 129-159.
  • 5Malioutov D, Cetin M, Willsky A S. A sparse signal re- construction perspective for source localization with sensor arrays [ J ]. IEEE Transactions on Signal Processing, 2005, 53(8) : 3010-3022.
  • 6Stoica P, Babu P, Li J. SPICE: A sparse covariance-based estimation method for array processing [ J ]. IEEE Transac- tions on Signal Processing, 2011, 59(2) : 629-638.
  • 7Yin J H, Chen T Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors [ J ]. IEEE Transactions on Signal Processing, 2011, 59 (9) : 4489- 4494.
  • 8Ye Z F, Zhang Y. DOA estimation for non-Gaussian sig- nals using fourth-order cumulants [ J ]. IET Microwaves, Antennas & Propagation, 2009, 3 (7) : 1069-1078.
  • 9StephenB,LievenV.凸优化[M].王书宁,许望,黄晓霖,译.北京:清华大学出版社,2013:149-153.
  • 10Zheng C D, Li G, Liu Y M, et al. Subspace weighted 121 minimization for sparse signal recovery [ J ]. EURASIP Journal on Advances in Signal Processing, 2012, 98( 1 ) : 1-11.

二级参考文献15

  • 1Frost O L. An algorithm for linearly constrained adaptive processing[ J ]. IEEE Proc., 1972,60 (8) :926-955.
  • 2Schmidt R O. Multiple emitter location and signal parame- ter estimation[ J]. IEEE Trans. Antennas Propag. , 1986, 34(3) :276-280.
  • 3Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [ J ]. IEEE Trans. Acoust. Speech Signal Process, 1989,37 (7) :984-995.
  • 4Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection [ J ]. IEEETrans. ASSP, 1988,36(10) : 1553-1560.
  • 5Donoho D L. Compressed sensing[ J]. IEEE Trans. Inf. Theory, 2006,52(4) : 1289-1306.
  • 6Fuchs J J. On the application of the global matched filter to DOA estimation with uniform circular arrays[ J]. IEEE Trans. Signal Process. , 2001,49 (4) :702-709.
  • 7Malioutov D, Mujdat C, Willsky A. A Sparse Signal Re- construction Perspective for Source Localization with Sen- sor Arrays [ J ]. IEEE Trans. Signal Process. , 2005,53 (8) :3010-3022.
  • 8Gurbuz A C, McClellan J H. A compressive beamformingaethod [ J ]. IEEE ICASSP, 2008,2617-2620.
  • 9Hyder M M, Matlata K. Direction-of-Arrival Estimation Using a Mixed L2,0 Norm Approximation [ J ]. IEEE Trans. Signal Process. , 2010,58 (9) :4646-4655.
  • 10Wang Y, Leus G, Pandharipande A. Direction estimation using compressive sampling array processing [ J ]. IEEE 15th Workshop on Sta. Signal Process. , 2009,626-629.

共引文献8

同被引文献12

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部