期刊文献+

UKF参数估计在三体Lambert问题中的应用 被引量:3

Application of UKF parameter estimation in the three-body Lambert problem
下载PDF
导出
摘要 为了快速精确地求解三体Lambert问题,提出了一种新的基于无损卡尔曼滤波(UKF)参数估计的数值求解算法,该算法由初值猜测和精确解求解两部分组成.首先,基于地月系统二体模型,通过简单迭代求解三体Lambert问题的初值.然后,将三体Lambert问题对应的两点边值问题转化为参数估计问题,通过UKF滤波算法求解,可得到收敛的精确解.该算法是基于概率估计理论的,不仅避免了传统数值方法推导相关梯度矩阵的复杂性,而且降低了三体Lambert问题对初值精确度的要求,从而显著降低了三体Lambert问题求解的难度.数值仿真表明,该方法求解效率较高,具有良好的鲁棒性,与微分修正算法、二阶微分修正算法对比具有更大的收敛域. A new algorithm based on unscented Kalman filter( UKF) parameter estimation was proposed for the fast and efficient solution of the three-body Lambert problem. The algorithm was divided into two steps,guessing the initial solution and searching the exact solution. The initial solution of the three-body Lambert problem was generated using the two-body model of the Earth-Moon system. Then the two-point boundary value problem corresponding to the original three-body Lambert problem was converted to a parameter estimation problem. Through solving the converted problem using UKF,the converged exact solution was found. The algorithm was based on the theory of probability,so the derivation of the gradient matrixes required by traditional numerical methods was omitted. Moreover,the demand for the accuracy of the initial solutions for the three-body Lambert problem was modified. Therefore,the difficulty of solving the three-body Lambert problem was greatly reduced. Numerical examples indicate that the algorithm is of high efficiency and robustness and obtains a larger convergence domain compared with the differential-correction method and the second order differential-correction method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第2期228-233,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 载人航天预研资助项目(010103)
关键词 三体系统 Lambert问题 两点边值问题 无损卡尔曼滤波 参数估计 three-body systems Lambert problem two-point boundary value problem unscented Kalman filter parameter estimation
  • 相关文献

参考文献15

  • 1Bate R, Mueller D, White J. Fundamentals of astrodynamics [ M ]. New York : Dover Publications, 1971 : 177-275.
  • 2Battin R H,Vaughan R M. An elegant Lambert algorithm [ J ]. Journal of Guidance, Control and Dynamics, 1984, 7 ( 6 ) : 662-670.
  • 3Gooding R H. A procedure for the solution of Lambert' s orbital boundary-value problem [ J ]. Celestial Mechanics & Dynamical Astronomy, 1990,48 ( 2 ) : 145-165.
  • 4D' Amarion L, Byrnes D,Sackett L. Optimization of multiple fly- by trajectories[ C ]//AAS/AIAA Astrodynamics Specialists Con- ference. Provincetown : AIAA Paper 1979:79-162.
  • 5Armellin R,Di Lizia P, Topputo F, et al. Gravity assist space pruning based on differential algebra [ J ]. Celestial Mechanics and Dynamical Astronomy ,2010,106 ( 1 ) : 1-24.
  • 6Jesicak M,Ocampo C. Automated generation of symmetric lunar free-return trajectories[ J ]. Journal of Guidance, Control and Dy- namics,2011,34 ( 1 ) :98-106.
  • 7Luo Q,Yin J, Han C. Design of earth-moon free-return trajecto- ries [ J ]. Journal of Guidance, Control, and Dynamics, 2012, 36( 1 ) :263-271.
  • 8Okutsu M,Longuski J. Mars free returns via gravity assist from Venus[ J]. Journal of Spacecraft and Rockets, 2002,39 ( 1 ) : 31-36.
  • 9Prado A F B A. Traveling between the Lagrangian points and the Earth [ J ]. Acta Astronautica, 1996,39 ( 7 ) :483 -486.
  • 10Lian Y J, Jiang X Y,Tang G J. Halo-to-halo cost optimal trans- fer based on CMA-ES [ C ]//Proceedings of the 32nd Chinese Control Conference, CCC 2013. Piseataway, NJ: IEEE, 2013 : 2468-2473.

二级参考文献17

  • 1韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004,24(5):9-14. 被引量:32
  • 2Battin R H, Vaughan R M. An elegant Lambert algorithm [ J ]. Journal of Guidance, Control and Dynamics ,1984,7:662-670.
  • 3Bate R, Mueller D, White J. Fundamentals of astrodynamics [ M ]. New York : Dover Publications, 1971 : 177 -275.
  • 4Gooding R H. A procedure for the solution of Lambert' s orbital boundary-value problem [ J]. Celestial Mechanics and Dynamical Astronomy, 1990,48 : 145-165.
  • 5Kriz J. A uniform solution of the Lambert problem[ J] Celestial Mechanics, 1976,14 (4) :509-513.
  • 6Nelson S L. Alternative approach to the solution of Lamberts problem [ J ]. Journal of Guidance, Control, and Dynamics, 1992, 15(4) :1003-1009.
  • 7Arlulkar P V, Naik S D. Solution based on dynamical approach for multiple-revolution Lambert problem [ J ]. Journal of Guid- ance,Control,and Dynamics,2011,34(3) :920-923.
  • 8Avanzini G. A simple Lambert algorithm [ J]. Journal of Guid- ance, Control, and Dynamics,2008,31 ( 6 ) : 1587 - 1594.
  • 9He Q, Li J, Han C. Multiple-revolution solutions of the trans- verse-eccentricity-based Lambert problem[ J ]. Journal of Guid- ance, Control, and Dynamics ,2010,33 ( 1 ) :265-268.
  • 10D' Amario L, Bynes D, Sackett L. Optimization of multiple flyby trajectories[ C ]//AAS/AIAA Astrodynamies Specialists Con- ference, Provincetown, Mass, AIAA Paper 79-162,1979.

共引文献5

同被引文献30

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部