期刊文献+

基于移动平台的快速相似脸检索 被引量:1

Fast similar face retrieval based on mobile platform
下载PDF
导出
摘要 主要研究了移动平台上的相似脸检索问题.对于移动端,首先采用基于稀疏约束的级联回归模型进行精确的人脸配准,该方法不但能够筛选鲁棒的特征,而且可以将模型的大小压缩到原来的5%左右.接着,在某些关键点周围提取高维的纹理特征,并通过稀疏投影降维.对于服务器端,采用级联形状和纹理特征的方式进行高效的相似脸检索.首先基于稀疏形状重构的方式筛选脸型相似的人脸,然后基于稀疏纹理重构的方法确定相似脸.在三星Note 3智能手机上,人脸图像的配准时间约10 ms.在扩展的LFW(Labeled Face in Wild)数据库上,相似脸检索时间约1.5 s,整个模型大小约5.4 MB.大量实验结果表明,配准方法精度高,速度快,模型小;相似脸检索的方法效率高,检索结果更符合人们的视觉感受. The problem of similar face retrieval on the mobile platform was studied. For the mobile terminal,sparse constrained cascade regression model was utilized to align the face image accurately,which could not only select the robust features,but also compress the model size to about 5% compared to the original size. Then high-dimensional texture features were extracted around some specific landmarks,and compressed by sparse projection. For the server side,shape and texture features were cascaded to retrieve similar faces efficiently. Faces with similar facial shape were selected by sparse shape reconstruction,and similar faces were finally selected by sparse texture reconstruction. On the Samsung smart phone of Note 3,the alignment time for each face image was about 10 ms. On the extended labeled face in wild( LFW) database,the retrieval time was about 1. 5 s and the size of the whole model was only 5. 4 MB. Extensive experiments show that the proposed alignment method is accurate and fast with compact model size. Similar face retrieval is efficient and the results are consistent with human visual perception.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第2期323-330,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(61272223 61300162) 江苏省自然科学基金资助项目(201204234 201210296)
关键词 移动平台 人脸配准 级联回归 相似脸检索 稀疏约束 mobile platform face alignment cascade regression similar face retrieval sparse constraint
  • 相关文献

参考文献20

  • 1Hua G, Fu Y ,Turk M,et al. Introduction to the special issue on mobile vision [ J ]. International Journal of Computer Vision, 2012,96(3 ) :277-279.
  • 2山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 3Cootes T F,Taylor C J,Cooper D H,et al. Active shape models- their training and application [ J ]. Computer Vision and Image Understanding, 1995,61 ( 1 ) :38-59.
  • 4Cootes T F, Edwards G J,Taylor C J. Active appearance models [J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2001,23(6) :681-685.
  • 5Cristinacce D,Cnotes T. Automatic' feature localisation with eon- strained local models [ ] ]. Pattern Recognition, 2008,41 ( 10 ) : 3054 -3067.
  • 6Zhu X X, Ramanan D. Face detection,pose estimation, and land- mark localization in the wild [ C ]//Proceeding of the Computer Vision and Pattern Recognition. Washington:lEEE Computer So- ciety ,2012:2879-2886.
  • 7Zhou F,Brandt J, Lin Z. Exemplar-based graph matching for ro- bust facial landmark localization[ C ]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway, N J: IEEE ,2013 : 1025-1032.
  • 8Sun Y,Wang X G,Tang X O. Deep convolutional network cas- cade for facial point detection[ C ]//Proceeding of the Computer Vision and Pattern Recognition. Washington:IEEE Computer So- ciety ,2013:3476-3483.
  • 9Cao X D, Wei Y C, Wen F, et al. Face alignment by explicit shape regression [ C ]//Proceeding of the Computer Vision and Pattern Recognition. Washington : IEEE Computer Society, 2012 : 2887 -2894.
  • 10Xiong X H,De la Torrc F. Supervised descent method and itsapplications to face alignment [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013 : 532- 539.

二级参考文献23

  • 1Buhman J., Lades M., Malsburg C. von der. Size and distortion invariant object recognition by hierarchical graph matching. In: Proceedings of IEEE International Joint Conference on Neural Network, San Diego, CA, 1989, 2: 411~416
  • 2Lades M., Vorbruggen J.C. et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 1993, 42(3): 300~311
  • 3Wiskott L., Fellous J.M., Kruger N., Malsburg C. von der. Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 775~779
  • 4Wurtz R.P. Object recognition robust under translations, deformations, and changes in background. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 769~775
  • 5Shan S., Gao W., Chang Y., Cao B., Yang P. Review the strength of Gabor features for face recognition from the angle of its robustness to mis-alignment. In: Proceedings of International Conference on Pattern Recognition, Cambridge, UK, 2004, 1: 338~341
  • 6Lampinen J., Oja E. Distortion tolerant pattern recognition based on self-organizing feature extraction. IEEE Transactions on Neural Networks, 1995, 6(3): 539~547
  • 7Schiele B., Crowley J.L. Recognition without correspondence using multidimensional receptive field histograms. International Journal of Computer Vision, 2000, 36(1): 31~50
  • 8Perantonis S.J., Lisboa P.J.G. Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers. IEEE Transactions on Neural Network, 1992, 3: 241~251
  • 9Ha T.M., Bunke H. Off-line, handwritten numeral recognition by perturbation method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5): 535~539
  • 10Martinez A.M. Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 748~763

共引文献17

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部