期刊文献+

全空间上一类半线性双调和方程正解的衰减

Decay Rate of Solutions to An Inhomogenerous Semilinear Biharmonic Equation in Entire Space
下载PDF
导出
摘要 研究如下非齐次双调和方程-△~2u+u^p+f(x)=0,x∈R^n(*)正解的存在性,其中△~2是双调和算子,p>1,n≥5,f≠0.在文献[16[的基础上,得到:对f给定条件,方程(*)有一类不同于文献[16]的两种衰减的正解. In this paper, we consider the existence of the positive solutions for the inhomogeneous biharmonic equation -△^2u+u^p+f(x)=0,x∈R^n(*) where △^2 is the biharmonic operator, p 〉 1, n ≥ 5 Based on [16], the existence of solutions with the under the assumptions on f. and f 0 is a given nonnegative function. third decay rate at infinity are established under the assumptions on f.
作者 杨芬
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期282-287,共6页 Acta Mathematica Scientia
基金 国家自然科学基金(11101166) 湖北省教育厅基金(D20131118)资助
关键词 非齐次双调和方程 正解 衰减 Inhomogeneous biharmonic equation Positive solution Decay rate.
  • 相关文献

二级参考文献13

  • 1Bae S. Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in R^n. J Diff Equations, 2004, 200:274-311
  • 2Bae S, Chang T K. On a class of semilinear elliptic equations in R^n. J Diff Equations, 2002, 185:225-250
  • 3Deng Y B, Li Y, Liu Y. On the stability of the positive radial steady states for a semilinear cauchy problem. Nonlinear Anal TM & A, 2003, 54:291-318
  • 4Fujiti H. On the Blowing up of solutions of the cauchy problem for ut = Δu + u^1+α. J Fac Sci Uni Tokyo (1), 1966, 13:109-124
  • 5Hartman P. Ordinary Differential Equations. 2nd ed. New York: Wiley, 1982
  • 6Lee T Y, Ni W M. Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem. Trans Amer math Soc, 1992, 333: 365-378
  • 7Liu Y, Li Y, Deng Y B. Separation property of solutions for a similar elliptic equation. J Diff Equations, 2000, 163(2): 381-406
  • 8Gui C. On positive entire solutions of the elliptic equation Δu + K(x)u^p = 0 and its applitions to Reimannian geometry. Proc Roy Soc Edinburgh, 1996, 126A: 225-237
  • 9Li Y. Asymptotic behavior of positive solutions of equation Δu + K(x)u^(n+2)/(n-2) = 0 in R^n. J Diff Equations, 1992, 95:304-330
  • 10Gui C F,Ni W M, Wang X F. On the stability arid instability of positive steady state of a semilinear heat equation in R^n. Comm Pure Appl Math, 1992, 45:1153-1181

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部