期刊文献+

非经典反应扩散方程在R^3中全局吸引子的存在性 被引量:2

Attractors for the Nonclassical Diffusion Equations with Critical Nonlinearity on the Whole Space R^3
下载PDF
导出
摘要 该文证明了带有临界非线性项的非经典反应扩散方程{vt-Δvt-Δu+f(x1,u)=g(x),(x,t)∈R3×R+ u(s,t)|t=0=v0, x∈R3}在H^1(R^3)上的全局吸引子的存在性,推广和改进了文献[15]的结果. We prove the existence of global attractor in H^1 (R^3) for the nonclassical diffusion equation with critical nonlinearity ut-Δut-Δu+f(x1,u)=g(x).The results generalize and improve some results in [15].
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期294-305,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11101334 11361053) 甘肃省自然科学基金(1107RJZA223) 甘肃高校科研项目资助
关键词 非经典反应扩散方程 临界指数 无界区域 全局吸引子 Nonclassical diffusion equation Critical nonlinearity Unbounded domain Global attractor.
  • 相关文献

参考文献2

二级参考文献12

  • 1Aifantis, E. C.: On the problem of diffusion in solids. Acta Mech., 37, 265-296 (1980).
  • 2Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and appliations, Spring-Verlag, Berlin, 1972.
  • 3Peter, J. G., Gurtin, M. E.: On the theory of heat condition involving two temperatures. Z. Ange. Math. Phys., 19, 614-627 (1968).
  • 4Zhong, C. K., Yang, M. H., Sun, C. Y.: The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations. J. Differential Equations, 223, 367-399 (2006).
  • 5Babin, A. V., Vishik, M. I.: Attractors of evolution equations, North-Holland, Amsterdam, 1992.
  • 6Cholewa, J. W., Dlotko, T.: Bi-spaces global attractors in abstract parabolic equations. Evol. Equations, Banach Center Publications, 60, 13-26 (2003).
  • 7Ma, Q. F., Wang, S. H., Zhong, C. K.: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. J. Indiana University Math., 51(6), (2002).
  • 8Xiao, Y. L.: Attractors for a nonclassical diffusion equation. Actc Mathematicae Applicatae Sinca, English Series, 18(1), 273-276 (2002).
  • 9Cholewa, J. W., Dlotko, T.: Global attractors in abstract parabolic problems, Cambridge University Press, Cambridge, 2000.
  • 10Hale, J. K.: Asymptotic behavior of dissipative systems, AMS, Providence, R J, 1988.

共引文献20

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部