期刊文献+

关于Wulff流情形下的等周不等式的注记 被引量:3

Remark on Isoperimetric Inequalities in the Wullf Case
下载PDF
导出
摘要 该文主要研究平面上Wulff流情形下的等周不等式.利用凸域的某些量在Wulff流情形下的变化规律(单调性、不变性),得到了Wulff-Gage等周不等式与曲率的Wulff-熵不等式的新的简单证明;进一步地,得到了一个新的Wulff流情形下的不等式. In this paper we investigate some isoperimetric inequalities in the Wulff case. Via certain quantity of convex domains variation (monotonicity, invariance) in the Wulff case, we give a simplified proof of Wulff-Gage isoperimetric inequality and the Wulff-entropy inequality for curvature. Finally, we obtain a new inequality in the Wulff case.
作者 马磊 曾春娜
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期306-311,共6页 Acta Mathematica Scientia
基金 国家自然科学基金天元基金(11326073) 重庆市基础与前沿研究计划项目(cstc2014jcyA00019) 广东石油化工学院高州师范学院教育科学十二五规划项目(2013GSKT01)资助
关键词 Wulff曲率 Wulff-Gage等周不等式 曲率的Wulff-熵不等式 凸域 Wulff curvature Wulff-Gage isoperimetrie inequality Wulff-entropy inequality for curvature Convex domains.
  • 相关文献

参考文献9

  • 1Osher S, Merriman B. The Wulff shape as the asymptotic limit of a growing crystalline interface. Asian J of Math, 1997, 1:560 571.
  • 2Gage M. An isoperimetric inequality with applications to curve shortening. Duke Math J, 1983, 50: 1225.
  • 31229 Green M, Osher S. Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for conver plane curves. Asian J Math, 1999, 3(3): 659 676.
  • 4潘生亮,唐学远,汪小玉.Gage等周不等式的加强形式[J].数学年刊(A辑),2008,29(3):301-306. 被引量:6
  • 5德麟.积分几何弓1论.上海:上海科学技术出版社,1988.
  • 6Santal6 L. Integral Geometry and Geometric Probability. Cambridge: Cambridge University Press, 2004.
  • 7Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014.
  • 8周家足,任德麟.从积分几何的观点看几何不等式[J].数学物理学报(A辑),2010,30(5):1322-1339. 被引量:42
  • 9马磊,曾春娜.关于曲率积分不等式的注记[J].数学杂志,2014,34(5):925-930. 被引量:7

二级参考文献16

  • 1任德麟.积分几何引论[M].上海:上海科技出版社,1988.
  • 2Gage M. An isoperimetric inequality with applications to curve shortening [J]. Duke Math. J., 1983,50: 1225-1229.
  • 3Gage M, Li Y. Evolving plane curves by curvature in relative geometries II [J]. Duke Math. J.,1994,75(1): 79-98.
  • 4Green M, Osher S. Steiner polynomials, wulff flows, and some new isoperimetric inequalities forconver plane curves [J]. Asian. J. math., 1999, 3(3): 659-676.
  • 5Pan Shengliang, Yang Junna. On a non-local perimeter-preserving curve evolution problem forconvex plane curves [J]. Manuscripta Math, 2008, 4(127): 469-484.
  • 6Escudero C, Reventos A, Solanes G. Focal sets in two-dimensional space forms [J]. Pacific J. Math.,2007,233(2): 309-320.
  • 7Zhou Jiazu. New curvature inequalities for curves [J]. Inter. J. of Math., comp. Sci. & Appl. 2007,1(1/2): 145-147.
  • 8Zhou Jiazu,Jiang Deshuo, Li Ming, Chen Fangwei. On Ros,theorem for hypersurfaces [J]. Acta.Math. Sinica, Chinese Series, 2009,6(52): 1075-1084.
  • 9Santalo L. Integral geometry and geometric probability[M]. Addison Wesley Publishing Company,1976.
  • 10Carmo Do. Differential geometry of curves and surfaces[M]. Englewood: Prentice-Hall, Inc. 1976.

共引文献47

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部