期刊文献+

其真商群是周期FC-群的群

Groups Whose Proper Quotients Are Periodic FC-Groups
下载PDF
导出
摘要 利用外FC-群的结果,给出了其真商群为周期FC-群但它本身不具备这种性质的群的结构的满意描述. A group is an FC-group if all its conjugacy classes are finite and a group is a periodic FC-group if it is an FC-group all of whose elements have finite order. A group G is said to be a just non-(periodic FC)-group if all its proper quotients are periodic FC-groups, but G itself is not. The purpose of this article is to give a satisfied description of the structure of just non-(periodic FC)-groups.
作者 张志让 李响
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期359-363,共5页 Acta Mathematica Scientia
基金 国家自然科学基金(11371335 11471055)资助
关键词 周期FC-群 外FC-群 外周期FC-群 外有限模 Periodic FC-groups Just non-FC-groups Just non-(periodic FC)-groups Just infinite modules.
  • 相关文献

参考文献11

  • 1Franciosi S, Giovanni F de, Kurdachenko L A. Groups whose proper quotients are FC-groups. J Algebra 1996, 186:544 577.
  • 2Franciosi S, Giovanni F de. Soluble groups with many nilpotent quotients. Proe Roy Irish Acad See A 1989, 89:401-411.
  • 3McCarthy D. Infinite groups whose proper quotients groups are finite, I. Comm Pure Appl Math, 1968 21:545-562.
  • 4McCarthy D. Infinite groups whose proper quotients groups are finite, II. Comm Pure Appl Math, 197(} 21:767 789.
  • 5Newman M F. On a class of metabelian groups. Proc London Math Soc, 1960, 10(3): 354 364.
  • 6Robinson D J S, Zhang Z R. Groups whose proper quotients have finite derived subgroups. J Algebra 1988, 118:346-368.
  • 7Robinson D J S, Wilson J S. Soluble groups with many polycyelic quotients. Proc London Math Soc 1984, 48(3): 193-229.
  • 8Robinson D J S. A Course in the Theory of Groups (2rid ed). Berlin: Springer-Verlag, 1996.
  • 9Robinson D J S. Finiteness Conditions and Generalized Soluble Groups. Berlin: Springer-verlag, 1972.
  • 10张志让.其真商群为满足极小条件的FO-群的群[J].数学学报(中文版),1990,33(3):344-347. 被引量:4

二级参考文献8

  • 1Franciosi S., de Giovanni F. and Kurdachenko L. A., Groups whose proper quotientsare FC-groups [J]. J. Alg., 1996, 186:544-577.
  • 2Kurdachenko L. A., Oral, J. and Subbotin I., Groups with Prescribed Quotient Groups and Associated Module Theory [M]. Singapore: World Scientific, 2002.
  • 3McCarthy D., Infinite groups whose proper quotient groups are finite Ⅰ [J]. Comm. PureAppl. Math., 1968, 21:545-562.
  • 4McCarthy D., Infinite groups whose proper quotient groups are finite Ⅱ [J]. Comm.Pure Appl. Math., 1970.23:767-789.
  • 5Robinson D. ,J. S., A Course in the Theory of Groups (2 ed.) [M]. New York: Springer-Verlag, 1996.
  • 6Robinson D. J. S. and Zhang, Z. R., Groups whose proper quotients have finite derived subgroups [J]. J. Alg., 1988, 118(2):346-368.
  • 7张志让.内-FI群和外-FI群[J].数学学报(中文版),1997,40(4):499-504. 被引量:1
  • 8张志让.其真商群为满足极小条件的FO-群的群[J].数学学报(中文版),1990,33(3):344-347. 被引量:4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部