摘要
利用Sadovskii不动点定理以及α-预解算子理论讨论了一类在Hilbert空间中带无限时滞的分数阶脉冲中立型随机微积分方程温和解的适定性,并通过举例说明了结果的有效性.
This paper deals with the well-posedness of mild solutions for a class of fractional neutral impulsive stochastic integro-differential equations with infinite delay in Hilbert spaces. The results are obtained by using the Sadovskii fixed point theorem combined with theories of α-resolvent operators. An example is provided to illustrate the effectiveness of the proposed results.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2015年第2期405-421,共17页
Acta Mathematica Scientia
基金
国家自然科学基金(11171158)
江苏省教育厅自然科学基金(11KJA110001)资助