期刊文献+

分数阶脉冲中立型随机微积分方程的适定性 被引量:1

Well-Posedness for Fractional Neutral Impulsive Stochastic Integro-Differential Equations
下载PDF
导出
摘要 利用Sadovskii不动点定理以及α-预解算子理论讨论了一类在Hilbert空间中带无限时滞的分数阶脉冲中立型随机微积分方程温和解的适定性,并通过举例说明了结果的有效性. This paper deals with the well-posedness of mild solutions for a class of fractional neutral impulsive stochastic integro-differential equations with infinite delay in Hilbert spaces. The results are obtained by using the Sadovskii fixed point theorem combined with theories of α-resolvent operators. An example is provided to illustrate the effectiveness of the proposed results.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第2期405-421,共17页 Acta Mathematica Scientia
基金 国家自然科学基金(11171158) 江苏省教育厅自然科学基金(11KJA110001)资助
关键词 α-预解算子 分数阶随机微积分方程 相空间 中立型 脉冲 Sadovskii不动点定理 α-Resolvent operator Fractional stochastic integro-differential equations Phase space Neutral Impulses Sadovskii's fixed point theorem.
  • 相关文献

参考文献23

  • 1Chang Y K, Nieto J J. Existence of solutions for impulsive neutral integro-differential inclusions with nonloeal initial conditions via fractional operators. Numer Funct Anal Optim, 2009, 30:22~244.
  • 2Cuevas C, Herngndez E, Rabelo M. The existence of solutions for impulsive neutral functional differential equations. Comput Math Appl, 2009, 58(4): 774 757.
  • 3Hernelndez E, Rabelo M~ Henrfquez H. Existence of solutions for impulsive partial neutral functional differential equations. J Math Anal Appl, 2007, 331(2): 1135-1158.
  • 4Yan Z M. Existence of solutions for nonlocal impulsive partial functional integrodifferential equations via fractional operators. J Comput Appl Math, 2011, 235(8): 2252-2262.
  • 5Hale J K, Kato J. Phase spaces for retarded equations with infinite delay. Funkcial Ekvac, 1978, 21:11-41.
  • 6Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1991.
  • 7Hu L, Ren Y. Existence results for impulsive neutral stochastic functional integro-differential equations. Acta Appl Math, 2010, 111(3): 303 317.
  • 8Parthasarathy C, Arjunan M M. Existence results for impulsive neutral stochastic functional integrodif- ferential systems with infinite delay. Malaya J Matematik, 2012, 1(1): 26-41.
  • 9Hiller R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000.
  • 10Lakshmikantham V, Leela S, Vasundhara Devi J. Theory of Fractional Dynamic Systems. Cambridge: Cambridge Scientific Publishers, 2009.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部