期刊文献+

MIM表面等离子激元布拉格纳米微腔 被引量:2

MIM Surface Plasmonic Bragg Nano Micro-Cavity
原文传递
导出
摘要 构建了一种金属-绝缘体-金属(MIM)表面等离子体布拉格波导结构,绝缘层为一维布拉格光栅结构。在布拉格光栅结构中引入缺陷,形成布拉格纳米微腔。这种纳米微腔结构可以将光子能量很好地局域在微腔中,且在金属与绝缘层界面上光子能量最强。分析了MIM波导的色散特性,获得了谐振波长为1550 nm时微腔的结构参数。同时利用时域有限差分(FDTD)方法讨论了绝缘层布拉格光栅周期数、绝缘层厚度、微腔长度对微腔品质因子Q和模式体积V的影响。通过合理的选择这些参数可以提高微腔性能,使其具有极小的模式体积V和高的Q/V值,可实现光子局域化。 A new type of metal-insulator-metal (MIM) surface plasmonic Bragg waveguide structure is proposed, in which one-dimensional Bragg grating is used as the intermediate insulating layer and the defect layer is introduced to construct the Bragg micro-cavity. The photon energy is well confined in the micro-cavity and most of the photon energy is localized along the interface between the insulating layer and metal. The structure parameters can be obtained through the analysis of the dispersion characteristics at the resonant wavelength of 1550 nm. The influences on the quality factor and mode volume by the structural parameters are analyzed by the finite-difference-time-domain (FDTD) method, such as the period number, the insulator layer thickness and the cavity length. The simulation results show that the performance of the cavity can be improved with proper parameters. The surface plasmonic Bragg nano micro-cavity has ultra-small mode volume V and high Q/V, which can achieve effective photon localization.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第4期11-16,共6页 Chinese Journal of Lasers
基金 国家自然科学基金(61172044 61201112)
关键词 光学器件 表面等离子体 MIM波导 布拉格光栅 纳米微腔 optical devices surface plasmon metal-insulator-metal (MIM) waveguide Bragg grating nanomicro- cavity
  • 相关文献

参考文献15

  • 1陈全胜,佟玉莹,庄园,蒋晓月,顾磊,王继成,王跃科.基于金属狭缝-凹槽结构单向激发表面等离子体[J].中国激光,2014,41(5):235-238. 被引量:16
  • 2Rashid Zia, Mark D Selker, Peter B Catrysse, et al.. Geometries and materials for subwavelength surface plasmon modes[J]. J Opt Soc Am A, 2004, 21(12): 2442-2446.
  • 3罗昕,邹喜华,温坤华,潘炜,闫连山,李孝峰.双节MIM结构表面等离子体窄带光学滤波器[J].光学学报,2013,33(11):237-241. 被引量:11
  • 4Jianqiang Liu, Lingling Wang, Mengdong He, et al.. A wide bandgap plasmonic Bragg reflector[J]. Opt Express, 2008, 16(7): 4888-4894.
  • 5Anders Pors, Sergey I Bozhevolnyi. Efficient and broadband quarter-wave plates by gap-plasmon resonators[J]. Opt Express, 2013, 21(3): 2942-2952.
  • 6Dongjin Lee, Haedong Yim, Seunggol Lee, et al.. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide[J]. Opt Express, 2011, 19(21): 19895-19900.
  • 7Bing Wang, Guoping Wang. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Appl Phys Lett, 2005, 87(1): 013107.
  • 8Amir Hosseini, Yehia Massoud. A low-loss metal-insulator-metal plasmonic bragg reflector[J]. Opt Express, 2006, 14(23): 11318-11323.
  • 9Amir Hosseini, Hamid Nejati, Yehia Massoud. Modeling and design methodology for metal-insulator plasmonic Bragg reflectors[J]. Opt Express, 2008, 16(3): 1475-1480.
  • 10Zhanghua Han, Erik Forsberg. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides[J]. Photonics Technology Letters, IEEE, 2007, 19(2): 91-93.

二级参考文献71

共引文献54

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部