期刊文献+

脉宽可调钬激光诱导水下声波信号特性实验研究 被引量:4

Experimental Research of Acoustic Transients Induced by Holmium:YAG Lasers with Tunable Pulse Duration Underwater
原文传递
导出
摘要 800 mm芯径低氢氧根光纤传输自由运转钬激光脉冲爆炸式汽化光纤端面的水形成汽化泡,汽化泡闭合时会辐射振荡波信号。不同激光参数条件下汽化泡形貌和运动状态有差异,导致辐射振荡声波的个数、强度、谐振周期、声学频率等特性参数不同。为研究不同脉宽对声信号的影响,搭建了声信号测量系统,通过示波器分析计算振荡波声学信号特征参数。结果表明电源电压为1000 V、频率为5 Hz、电源脉宽为0.7--1.6 ms的条件下,随着脉宽增加,声压值整体上先升高但存在多个拐点,达到峰值1.01 MPa后呈现下降趋势,但第一个声学信号频率总体呈下降趋势且最大值为400 Hz。高能量、短脉宽的钬激光脉冲能诱导高强度、多个数、短周期、高频率的振荡波信号。 Free-running holmium: YAG lasers transmitting in a fiber with core diameter of 800 pm can induce vaporization bubble explosively at the end of fiber underwater. Shock waves will be produced upon the vaporization bubble collapse. The shape and dynamic state of vaporization bubble under different laser parameters, can result in variable parameters of the number, intensity, oscillation period, acoustic frequency, and so on, of shock waves. An acoustic measurement system has been built to investigate the influence of pulse duration on acoustic transients, and the characteristic parameters of the first acoustic transient can be recorded by an oscillograph. The experimental results indicate that under the condition of 1000 V voltage, 5 Hz frequency, 0.7-1.6 ms pulse duration of pump power, resonance will happen for the intensity of acoustic transients at the starting period. Finally the intensity will decrease after reaching the peak value of 1.01 MPa. The frequency of acoustic transients will always decrease gradually as the pulse duration of lasers increases, and its peak value can reach 400 Hz. Holmium : YAG lasers with higher energy and shorter pulse duration can induce acoustic transients with higher intensity, more number, shorter period, and higher frequency.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第4期92-97,共6页 Chinese Journal of Lasers
基金 武汉市青年科技晨光计划(201271031430) 中国博士后科学基金面上项目(2014M2104) 中国科学院江苏省医用光学重点实验室开放基金(JKLMO201405) 湖北省自然科学基金(2014CFB335)
关键词 生物医学光学 红外脉冲激光 汽化效应 脉宽可调 biomedical optics infrared pulse laser vaporization effect tunable pulse duration
  • 相关文献

参考文献5

二级参考文献29

  • 1Vogel A, Venugopalan V. Chem Rev, 2003, 103:577-644.
  • 2Frenz M, Paltauf G, Schmidt-kloiber H. Phys Rev Lett, 1996, 76 3546-3549.
  • 3Wagner W, Sokolow A, Peartstein R, et al. Appl Phys Lett, 2009, 94 013901.
  • 4Bfinkmann R, Hansen C, Mohrenstecher D, et al. IEEE J Quant Electron, 1996, 2:826-835.
  • 5Asshauer T, Rink K, Delacretaz G. J Appl Phys, 1994, 76: 5007- 5013.
  • 6Frenz M, Konz F, Pratisto H, et al. J Appl Phys, 1998, 84:5905-5912.
  • 7Frenz M, Pratisto H, Konz F, et al. IEEE J Quant Electron, 1996, 32: 2025-2035.
  • 8Asshauer T, Delacretaz G, Jansen E D, et al. Appl Phys B, 1997, 65: 647-657.
  • 9Jansen E D, Asshauer T, Frenz M, et al. Lasers Surg Med, 1996, 18: 278-293.
  • 10Kang H W, Lee H, Teichman J M H, et al. Lasers Surg Med, 2006, 38:762-772.

共引文献13

同被引文献25

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部