期刊文献+

基于荧光共聚焦技术熔石英亚表层损伤检测方法 被引量:8

Fused Quartz Subsurface Damage Detecting Method Based on Confocal Fluorescence Microscopy
原文传递
导出
摘要 熔石英光学材料是一种高新技术产品,在现代各领域的应用越来越广泛,特别是航天航空等领域具有大量应用需求。由于其产品的制造难度较大,因此其成品质量的高低就成为人们最为关注的问题,其中尤以亚表层损伤的问题至关重要。论述了几种常用的亚表层损伤检测方法和原理,分析了其优缺点。在此基础上说明了使用荧光共聚焦显微技术来检测光学元件亚表层损伤的可行性和准确性。使用共聚焦激光扫描显微镜对熔石英玻璃试件的亚表层损伤进行了检测实验。对比了角度抛光法所得到的两种荧光量子点亚表层损伤深度,可以明确在一定的加工条件下亚表层损伤的分布情况。使用图像处理软件Image-Pro Plus 6.0分析了亚表层损伤的分布图像及分布密度,定量的给出了亚表层损伤的基本规律。 Fused quartz optical material is a kind of new and high technology products, which has important applications both in aerospace and in daily life. The manufacturing cost and the complexity of manufacturing process are far more than other similar products because of its manufacturing difficulty. So the quality of finished products becomes the problem that people take the most attention to, in which subsurface damage detection is of special importance. Organize several commonly used surface damage detection methods and principles. The advantages and disadvantages of several methods are analyzed. And on this basis, this paper discusses the feasibility and accuracy of using confocal fluorescence microscopy to detect the optical element and dart layer damage. Using confocal laser scanning microscopy to detect fused quartz glass specimen surface damage is carried out. Using two kinds of fluorescent quantum dots respectively, the surface damage of the specimens tomographic images is obtained. Through testing the specimens we obtain distribution images of the surface damage. Using Image-Pro Plus 6.0 software processing, the scope of distribution density is got. Basic rules of sub-surface damage are concluded quantitatively.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第4期186-194,共9页 Chinese Journal of Lasers
基金 国家自然科学基金(51475106) 国家自然科学基金委员会与中国工程物理研究院联合基金(U1230110) 中国工程物理研究院超精密加工技术重点实验室开放基金(KF14007)
关键词 光学制造 熔石英 亚表层损伤 共聚焦显微技术 optical fabrication fused quartz subsurface damage confocal microscopy Parameter optimization
  • 相关文献

参考文献13

  • 1宋波,罗琳,王玉芬.高纯石英玻璃研抛特性的研究[J].光学技术,2008,34(S1):278-280. 被引量:6
  • 2H P paul, D F Edwards, J B Davis. Subsurface damage in optical materials: origin measurement & removal[C]. SPIE, 1988. 113-118.
  • 3Genin F Y, Salleo A, Pistor T V, et al.. Role of light intensification by cracks in optical breakdown on surfaces[J]. JOSA A, 2001, 18 (10): 2607-2616.
  • 4Davis T. Biography of louis E. brus[C]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (5): 1277-1279.
  • 5Jamieson T, Bakhshi R, Petrova D, et al.. Biological applications of quantum dots[J]. Biomaterials, 2007, 28(31): 4717-4732.
  • 6Wu X, Liu H, Liu J, et al.. Immunofluoreseent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology, 2002, 21(4): 41-46.
  • 7Lindquist, S D Jacobs, A Feltz. Surface preparations for rapid measurement of sub-surface damage depth[C]. Science of Optical Finishing Topical Meeting, 1990.57-61.
  • 8Bourlinos A B, Stassinopoulos A, Anglos D, et al.. Surface functionalized carbogenic quantum dots[J]. Small, 2008, 4(4): 455-458.
  • 9Williams W B. A Novel Fluorescence Based Method of Assessing Subsurface Damage in Optical Materials[D]. Charlotte: The University of North Carolina at Charlotte, 2009.45-47.
  • 10Chan W C W, Nie S. Quantum dot bioconjugates for uhrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.

二级参考文献25

共引文献46

同被引文献72

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部