期刊文献+

基于时间约束的无人机避障研究 被引量:5

Study on collision avoidance for UAV based on the time constraint
原文传递
导出
摘要 对无人机避开障碍物这一热点问题展开了研究。在极坐标系下,基于无人机与障碍物之间的几何关系,建立了无人机与障碍物之间的运动学方程。通过设计滑模变结构有限时间收敛制导律,使连接无人机与避障点的视线角速率快速收敛到零,相对速度方向收敛到期望的避障方向,保证了无人机能够顺利避开运动障碍物。通过有限时间收敛分析,得到了相对速度收敛到期望的避障方向时间与制导律参数的表达式。通过选择合适的参数,可使收敛时间小于到达避障点的时间,保证了避障的完成,也确定了制导律参数的取值范围。最后对设计的避障算法进行了仿真,仿真结果验证了算法的有效性。 This paper studies the hot issue of the UAV to avoid obstacles. Based on the geometric relationship between the UAV and the obstacle,we obtain the kinematics equations between the UAV and the obstacle in the polar coordinate. Under the sliding-mode variable structure finite-time convergence guidance law,the angular rate of the sight line that connects the UAV with the collision avoidance point converge to zero,meanwhile the angle of the relative velocity converges to the required angle of the collision avoidance vector,so the UAV can avoid the obstacles successfully. By analyzing the convergence time,we get the equation of the convergence time with the guidance law parameters. So we can chose the appropriate parameters to make the convergence time be shorter than the time that the UAV reaches the obstacle,and also obtain the range of the parameters. Finally,we make the simulation of the algorithm,and the results show the effectiveness of the algorithm.
出处 《飞行力学》 CSCD 北大核心 2015年第2期125-129,共5页 Flight Dynamics
基金 航空科学基金资助(20135584010)
关键词 运动学方程 滑模导引律 有限时间 避障 kinematics equations sliding-mode guidance law finite-time collision avoidance
  • 相关文献

参考文献10

  • 1Khatib O. Real time collision avoidance for manipulators and mobile robots [ J ]. The International Journal of Robot- ics Research, 1986,5 ( 1 ) :90-98.
  • 2Erdmann M, Lozano-Perez T. On multiple moving objects [ J ]. Algorithmica, 1987,2 ( 1 ) :477-521.
  • 3Fujimura K, Samet H. Roadmap-based motion planning in dynamic environments [ J ]. IEEE Trans. Robot, 2005,21 (5) : 885-897.
  • 4Ge S, Cui Y. Dynamic motion planning for mobile robots using potential field method [ J ]. Auton Robots, 2002,13 (3) :207-233.
  • 5Seder M, Petrovic I. Dynamic window based approach to mobile robot motion control in the presence of moving ob- stacles [ C ]//Conf. Robot. Italy: Autom, Roma, 2007: 1986-1992.
  • 6Chakravarthy A, Ghose D. Obstacle avoidance in dynamic environment: a collision cone approach [ J ]. IEEE Trans- actions Systems, Man Cybernetics : Systems, Humans, 1998,28 (5) :562-574.
  • 7Belkhouche F, Belkhouche B. Kinematics based character- ization of the collision course [ J ]. Robot Autom, 2008,23 (2) :127-136.
  • 8朱齐丹,仲训昱,张智.基于速度变化空间的移动机器人动态避碰规划[J].机器人,2009,31(6):539-547. 被引量:13
  • 9Large F, Sckhavat S, Shiller Z, et al. Using non-linear ve- locity obstacles to plan motions in a dynamic environment [ C ]//ICARCV Control, Automation, Robot and Vision Conference. France : IEEE ,2002,734-739.
  • 10Van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation [ C ]//ICRA Robotics and Automation Conference. CA: IEEE, 2008, 1928-1935.

二级参考文献16

  • 1张凤,谈大龙.动态未知环境下基于相对坐标系的移动机器人实时运动规划[J].机器人,2004,26(5):434-438. 被引量:10
  • 2Tang P, Zhang Q, Yang Y M. Studying on path planning and dynamic obstacle avoiding of soccer robot[C]//3rd World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE, 2000: 1244-1247.
  • 3Rude M. Collision avoidance by using space-time representations of motion processes[J]. Autonomous Robots, 1997, 4(1): 101-119.
  • 4Hsu D, Kindel R, Latombe J C, et al. Randomized kinodynamic motion planning with moving obstacles[J]. International Journal of Robotics Research, 2002, 21(3): 233-255.
  • 5Rimon E, Koditschek D E. Exact robot navigation using artificial potential functions[J]. IEEE Transactions on Robotics and Automation, 1992, 8(5): 501-518.
  • 6Masoud S A, Masoud A A. Constrained motion control using vector potential fields[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(3): 251-272.
  • 7Tsourveloudis N C, Valavanis K P, Hebert T. Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4): 490-497.
  • 8Fiorini P, Shiller Z. Motion planning in dynamic environments using the relative velocity paradigm[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1993: 560-565.
  • 9Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles[J]. International Journal of Robotics Research, 1998, 17(7): 760-772.
  • 10Shiller Z, Large F, Sekhavat S. Motion planning in dynamic environments: Obstacles moving along arbitrary trajectories[C]//IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2001: 3716-3721.

共引文献12

同被引文献53

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部