期刊文献+

Permanence of a Nicholson's Blowflies Model with Feedback Control and Multiple Time-varying Delays

一类具有反馈控制与多变时滞Nicholson’s Blowflies模型的持久性(英文)
下载PDF
导出
摘要 This paper covers the dynamic behaviors for a class of Nicholson’s blowflies model with multiple time-varying delay and feedback control. By using the dierential inequality theory, a set of sucient conditions are obtained to ensure the permanence of the system. Our result shows that feedback control variables have no influence on the permanence of the system.
出处 《Chinese Quarterly Journal of Mathematics》 2015年第1期153-158,共6页 数学季刊(英文版)
基金 Supported by the Foundation of Fujian Education Bureau(JA13361) Supported by the National Natural Science Foundation of Fujian Province(2013J01010)
关键词 PERMANENCE Nicholson’s blowflies model DELAY feedback control permanence Nicholson’s blowflies model delay feedback control
  • 相关文献

参考文献10

  • 1CHEN Wei, LIU Bing-wen. Positive almost periodic solution for a class of Nicholsons blowflies model with multiple time-varying delays[J]. J Comput Appl Math, 2011, 235: 2090-2097.
  • 2GOPALSAMY K, WENG Pei-xuan. Feedback regulation of logistic growth[J]. Internat J Math Math Sci 1993. 16: 177-192.
  • 3WENG Pei-xuan. Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls[J]. Comput Math Appl, 2000, 40: 747-759.
  • 4CHEN Feng-de, LI Zhong, HUANG Yun-jing. Note on the permanence of a competitive system with infinite delay and feedback controls[J]. Nonlinear Anal RWA, 2007, 8: 680-687.
  • 5SHI Chun-ling, LI Zhong, CHEN Feng-de. Extinction in a nonautonomous Lotk~-Volterra competitive system with infinite delay and feedback controls[J]. Nonlinear Anal RWA, 2012, 13: 2214-2226.
  • 6CHEN Feng-de. Positive periodic solutions of neutral Lotka-Volterra system with feedback control[J]. Appl Math Comput, 2005, 162: 1279-1302.
  • 7CHEN Xiao-xing. Almost periodic solutions of nonlinear delay population equation with feedback control[J] Nonlinear Anal RWA, 2007, 8: 62-72.
  • 8LI Zhong, HAN Mao-an, CHEN Feng-de. Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays[J], Nonlinear Anal RWA, 2013, 14: 402-413.
  • 9CHEN Feng-de, LIN Fa-xing, CHEN Xiao-xing. Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control[J]. Appl Math Comput, 2004, 158: 45-68.
  • 10HALE J K, VERDUYN Lunel S. Introduction to Functional Differential Equations[M]. New York: Springer- Verlag, 1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部