期刊文献+

Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier

Effect of the dispersion on multipartite continuous-variable entanglement in optical parametric amplifier
下载PDF
导出
摘要 Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement. Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
作者 赵超樱
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期42-45,共4页 中国物理B(英文版)
基金 Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan 030006,China(Grant No.KF201401) the National Natural Science Foundation of China(Grant No.11404084)
关键词 DISPERSION multipartite entanglement optical parametric amplifier dispersion, multipartite entanglement, optical parametric amplifier
  • 相关文献

参考文献27

  • 1Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513.
  • 2Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706.
  • 3Li X, Pan Q, Jing J, Zhang J, Xie C and Peng K 2002 Phys. Rev. Lett. 88 047904.
  • 4Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579.
  • 5Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731.
  • 6Reid M D 1989 Phys. Rev. A 40 913.
  • 7Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys, Rev. Lett. 68 3663.
  • 8Pereira S F, Ou Z Y and Kimble H J 2002 Phys. Rev. A 62 042311.
  • 9Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903.
  • 10Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A and Loock P V 2003 Phys. Rev. Lett. 91 080404.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部