期刊文献+

Influence of multi-photon excitation on the atomic above-threshold ionization

Influence of multi-photon excitation on the atomic above-threshold ionization
下载PDF
导出
摘要 Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results. Using the time-dependent pseudo-spectral scheme, we solve the time-dependent Schrodinger equation of a hydrogen- like atom in a strong laser field in momentum space. The intensity-resolved photoelectron energy spectrum in abovethreshold ionization is obtained and further analyzed. We find that with the increase of the laser intensity, the abovethreshold ionization emission spectrum exhibits periodic resonance structure. By analyzing the population of atomic bound states, we find that it is the multi-photon excitation of bound state that leads to the occurrence of this phenomenon, which is in fairly good agreement with the experimental results.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期138-142,共5页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2013CB922200) the National Natural Science Foundation of China(Grants Nos.11274141,11034003,11304116,11274001,and 11247024) the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20140101168JC)
关键词 time-dependent pseudo-spectral scheme above-threshold ionization resonance structure time-dependent pseudo-spectral scheme, above-threshold ionization, resonance structure
  • 相关文献

参考文献36

  • 1Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389.
  • 2Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127.
  • 3McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595.
  • 4Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227.
  • 5Chen J, Zeng B, Liu X, Cheng Y and Xu Z Z 2009 New J. Phys. 11 113021.
  • 6Tian Y Y, Guo F M and Yang Y J 2013 Acta Phys. Sin. 62 073202.
  • 7Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405.
  • 8Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milooevio D B, Muller H G and Vrakking M J J 2008 New J. Phys. 10 025024.
  • 9Kamta G L and Bandrauk A D 2006 Phys. Rev. A 74 033415.
  • 10Meckel M, Comtois D, Zeidler D, Staudte A, Pavioio D, Bandulet H C, Pépin H, Kieffer J C, Dorner R, Villeneuve D M and Corkum P B 2008 Science 320 1478.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部